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a b s t r a c t

Pinot blanc is a leading grapevine variety in South Tyrol (Italy) for wine production. The high quality of its wines 
derives from a typical aroma of elegant apple notes and lively acidity. The typicity of the final wine depends on the 
origin of the vine, the soil, the oenological practices and time of harvest. The South Tyrolean mountainous areas meet 
the cold climatic requirements of Pinot blanc, which guarantee its sweet-acidic harmony obtained when organic acids 
are in balance with the other components of the wine. However, increasing temperatures in valley sites during the 
berry development period boost the activity of malic acid (MA) enzymes, which negatively affect the final sugar/acid 
ratio. Researchers are currently focused on understanding acid dynamics in wines, and there are no references for 
the best sugar/acid ratio for Pinot blanc. Moreover, the contribution of individual acids to the sensory profile of this 
wine has not yet been studied. In this study we address the effect of different climate conditions and site elevations 
on the sugar/acid ratio in developmental grapevine berries, and  we evaluate the effect on wine bouquet. Even if 
different models and indices have been proposed for predicting sugar content, no predictive models exist for MA in 
white grapes. In a three-year study (2017, 2018 and 2019) that involved eight vineyards in four different location in 
South Tyrol at various elevations ranging from 223 to 730 m a.s.l., the relationships between bioclimatic indices, such 
as growing-degree day (GDD) and grapevine sugar ripeness (GSR) and grapevine berry content were investigated.  
The analysis reveals that GDD may potentially predict MA dynamics in Pinot blanc; hence, a GDD-based model was 
used to determine the GDD to reach target MA concentrations (3.5, 3.0, 2.5, 2.0 g/L). This simple model was improved 
with additional temperature-based parameters by feature selection, and the best three advanced models were selected 
and evaluated by 5-fold cross-validation. These models could be used to support location and harvest date choice to 
produce high-quality Pinot blanc wines.
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INTRODUCTION 

Pinot blanc is an ancient grapevine variety 
first described in 1868 (Jackson, 2008).  
It is the result of an independent mutation of 
Pinot noir and for several years it was confused 
with Chardonnay, until its relationship with its 
ancestor was demonstrated (Vezzulli et al., 2012). 
Pinot blanc has heat requirements compatible 
with cool climate viticulture regions and vineyard 
elevations of between 400 and 500 m a.s.l. (Pedri 
and Pertoll, 2013; Dupas de Matos et al., 2020). 
South Tyrol is one of the smallest and most 
important winemaking areas in Italy. White wines 
represent up to 62 % of the total South Tyrolean 
wine production; Pinot gris, Gewürztraminer and 
Pinot blanc are the leading cultivars covering 11.9, 
10.8 and 10.2 % respectively of the entire area 
(Suedtirol Wein, 2020).

Pinot blanc wines produced in South Tyrol express 
an elegant scent of apples and are characterised by 
lively acidity and typical aromas of apple, pear, 
citrus and green notes, and occasionally notes of 
quince and exotic fruit or spicy and nutty notes 
(Pedri and Pertoll, 2013). Fruity aroma, acidity and 
relatively low alcohol content are characteristic of 
white wines produced in cool climate wine regions 
(Molitor and Junk, 2019). The specific taste of a 
wine results from a suitable balance between sugar 
(sweet), organic acids (sour) and polyphenols 
(bitter/astringent) (Briones-Labarca et al., 2017). 
Carbohydrates and organic acids are primary 
grapevine metabolites, being the most important 
determinants for berry and wine organoleptic 
quality and followed by secondary metabolites, 
such as phenolic compounds and aromatic 
substances (Rusjan et al., 2008). 95–99 % of 
carbohydrates in grapevine berries are glucose and 
fructose (Keller, 2010). The glucose/fructose ratio 
in the berry is approximately 1:1 at pre-véraison, 
when average temperatures are above 10 °C, and 
it increases with temperature during ripening 
(Keller, 2010). This proportion is also dependent 
on the ability of different cultivars to accumulate 
sugars. Pinot blanc, like Chardonnay, is classified 
as a high-fructose variety (Kliewer et al., 1967). 

70–90 % of the total amount of organic acids 
in mature grape berries comprises tartrate and 
malate (Keller, 2010); a titratable acidity level of 
6.5–8.5 g/L is considered an optimal range 
for well-balance wines (Conde et al., 2007).  
Organic acid content influences the taste, 
chemical stability and pH of juices and 
wines, therefore directly affecting berry 
and wine quality (Eyduran et al., 2015).  

Different acids are responsible for different 
organoleptic properties (Chidi et al., 2018). 
Acid-balanced wines will have refreshing or crisp 
sensory undertones, while wines of high acidity 
will taste sour and sharp (Volschenk et al., 2006). 
Moreover, Margalit (1997) found that the 
organoleptic perception of wines can be 
significantly influenced by minor changes in 
wine pH, along with changes in total acidity  
(0.2–0.5 g/L).

Tartaric acid is the main acid in grapes, followed 
by malic acid (MA); the former is responsible for 
wine biological stability, while the latter confers 
the typical “green tones” to wines (Bakker and 
Clarke, 2011). The tartaric acid and MA ratio  
differs according to grapevine variety, thus 
affecting the final grapevine acidity level 
(Kliewer et al., 1967). Mature grape can contain 
5.0–10.0 g/L of tartaric acid, while MA can 
range from 2.0 to 6.5 g/L or more in vintages 
characterised by cool summers in cool-climate 
viticulture regions (Ribéreau-Gayon et al., 2006). 
Tartaric acid concentration in berry juice 
is relatively constant during berry ripening 
(Cholet et al., 2016; Rösti et al., 2018); conversely, 
MA content is subject to fluctuation, because it 
is transformed to fructose and glucose or used 
as a source of carbon and energy for respiration 
(Conde et al., 2007). MA is also sensitive to warm 
temperatures both before and after véraison, when 
process linked to the biosynthetic pathway and 
the respiration process respectively take place 
(Kliewer et al., 1967; Ruffner et al., 1984). Many 
studies reported the negative correlation between 
high temperatures and MA content after véraison 
(Sweetman et al., 2014; Rienth et al., 2016; 
Blank et al., 2019). However, the biochemical and 
molecular mechanisms involved downstream of 
the MA metabolic pathways are still raveled, and 
an unclear slower drop in MA content has been 
observed in cooler regions (Sweetman et al., 2014). 
MA degradation appears to be slower in cool 
climates, where it represents up to the 50 % of 
total acidity in berry juice (Jackson, 2008), and 
faster in warmer regions, as reported for Pinot noir 
by Blank et al. (2019). This negative correlation 
between MA content and high temperatures 
are ascribed to the differences observed in the 
optimum activity temperatures of enzymes 
involved in the biosynthesis and catabolism of MA 
(Conde et al., 2007); therefore, climatic conditions 
and environmental stressors can physically and 
biochemically affect grapevine berries during 
the ripening period, as well as influence the final 
sugar/organic acid ratio (Volschenk et al., 2006). 
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After monitoring and analysing the sugar and 
organic acid composition of 98 grapevine cultivars 
over two years, Liu et al. (2006) found that the 
acids were sensitive to climate change, while 
the concentration of sugars appeared to remain 
relatively stable.

The typicity of a final wine is the result of several 
factors, such as the origin of a grapevine variety, 
soil, agricultural and oenological practices and 
vintage (Maitre et al., 2010). Preserving the 
typicity and quality of South Tyrolean Pinot blanc 
is of primary importance for historical, traditional 
and economic reasons. However, to the best of our 
knowledge, the literature about Pinot blanc is very 
scarce, and references for the optimum sugar/acid 
balance and evaluations of the effect of climate 
alterations on Pinot blanc wine quality are lacking. 
For this reason, we aimed to investigate the effect 
of vineyard microclimatic conditions on the grape 
berry’s development process, with a focus on 
the sugar/organic acid ratio. Rising temperatures 
increase sugar concentration and deplete MA in 
the berries, thus altering the typical fresh aromas 
of green apple, citrus fruit and floral aromas of 
Pinot blanc. Therefore, establishing vineyards on 
cooler winegrowing sites could potentially result 
in a reduction in MA dynamics and thus preserve 
wine quality.

MATERIALS AND METHODS

1. Study area

The study area is located in South Tyrol (Italy), 
a traditional winegrowing region in the Alps, 
where Pinot blanc is one of the most important 
varieties (Egarter Vigl et al., 2018). South 
Tyrolean topography is more complex than most 
of the typical winegrowing regions worldwide; 
grapevines are grown at elevations ranging from 
206 to 1323 m a.s.l. in different microclimatic 
zones (Becker et al., 2007; Ferretti, 2020). Eight 
vineyards homogeneously distributed in the 
Adige Valley (Autonomous Province of Bolzano) 
and located in four typical viticultural zones 
(municipalities), Eppan (Ep), Nals (Na), Terlan 
(Te) and Tramin (Tr), were selected for the current 
study (Figure 1). The study was conducted over 
three consecutive vegetative growing seasons 
(VS) from 2017 to 2019.

All eight vineyards are cultivated with the same 
variety (Pinot blanc), clone (Lb-16), rootstock 
(SO4), training system (guyot), planting system 
(1.9 m x 0.9 m) and plant density (approximately 
7063 plant/ha); additional information is given 
in Table 1. Two elevation-diverse vineyards 
from each municipality were selected. Each 
vineyard was given the municipality’s name and 

FIGURE 1. Location of the studied vineyards.
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a code number for elevation (1 for lower sites,  
2 for higher sites); the vineyards will be hereafter 
referred to in their abbreviated form (Table 1).

2. Climate data
A temperature sensor was placed 2 m aboveground 
in each vineyard to measure air temperature 
over VS. Temperature was recorded hourly and 
summarised daily by calculating base parameters, 
such as average, minimum and maximum 
temperatures. Missing values were replaced 
with predicted values specifically generated 
by a forecasting model for the South Tyrol 
region (Egarter Vigl et al., 2018). Prior to being 
processed, data were analysed and compared 
for reliability with the available sensor data. 
Secondary climate parameters and bioclimatic 
indices were determined, such as cumulative 
temperature per phenological period, Growing 
Degree Days (GDD; Winkler, 1974) and Grapevine 
Sugar Ripeness (GSR; Parker et al., 2020). Six 
phenological periods [based on the BBCH scale 
for grapevines (Lorenz et al., 2008)] were taken 
into consideration: 1) grapevine vegetative 
season (VS, 1st April - 31 October); 2) 1st April 
– budburst (BBCH 7), pre-bd; 3) budburst (BBCH 
7) – flowering (BBCH 65), bd-bloom; 4) flowering 
(BBCH 65) – véraison (BBCH 81), bloom-ver; 5) 
véraison (BBCH 81) - ripening (BBCH 89), ver-
rip; and 6) post-ripening – 31 October, post-rip. 
GDD and GSR were calculated using the base 
temperatures of 10 °C and 0 °C respectively. 
Negative values were excluded (Equation 1). 

EQUATION 1. Growing degree day equation 
and grapevine sugar ripeness, Tbase = 10 °C and 
Tbase = 0 °C respectively.

The model developed by Egarter Vigl et al. (2018) 
also provided an estimation of the monthly 
potential solar radiation for each site. Moreover, 
the transpiration efficiency – an indicator of 
the water content and evaporative demand 
(drought stress) – was evaluated via the stable 
carbon isotopic fraction 13C/12C of ethanol 
in the wine following the standard method  
OIV-MA-AS312-06 R2001 (Reg. CE 2676/1990; 
Reg. CE 440/2003).

3. Phenological data and grape maturity tests

The grapevine phenology stages (budburst, full 
flowering and véraison) were dated according to 
the international BBCH scale (Lorenz et al., 2008). 

The berry ripening process was monitored from 
véraison to technological maturity. In each 
vineyard, three replicates of 150 berries were 
periodically sampled and crushed into juice. 
Specifically, three berries located at the top, in 
the middle and at the bottom of the grape cluster 
were collected from 50 bunches per replicate. The 
samples were immediately filtered and analysed 
for total soluble solids (TSS, g/L), pH, MA content 
(g/L), tartaric acid content (g/L), total acidity 
(g/L), ammonia and amino nitrogen (mg/L) by 
spectroscopic method (FT-IR WineScanTM, FOSS, 
Denmark). Plant phenological data, sugar- and 
MA-content were given bioclimatic indices to 
estimate the potential of those indices as predictors 
for the ripening process and grape quality in terms 
of sugar/MA balance.

The production regulation of DOC South Tyrol for 
Pinot blanc wines stipulates a minimum of 10.5 % 
volume of alcohol, corresponding to ≈ 205 g/L 
in grape juice (Provincia Autonoma di Bolzano, 
2019); the data collected between 1985 and 
2017 by Laimburg Research Centre indicated an 
average value of 227.9 +/- 1.7 g/L for Pinot blanc 

TABLE 1. Vineyard information.

Vineyard name Abbreviation Planting year Elevation m a.s.l. Slope % Exposition Row direction

Eppan 1 Ep_1 2008 542 16.5 East-Southeast North-South
Eppan 2 Ep_2 2002 569 20.0 East-Southeast North-Southwest
Nals 1 Na_1 2011 419 21.0 East-Southeast North-Southeast
Nals 2 Na_2 2010 650 23.0 East-Southeast North-Southwest

Terlan 1 Te_1 2007 279 12.0 South-Southwest East-West
Terlan 2 Te_2 2006 670 40.0 South-Southwest East-West
Tramin 1 Tr_1 2010 223 6.5 Southeast-South North-Southwest
Tramin 2 Tr_2 1997 730 40.0 Southeast-South Northeast-Southwest
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grapes at harvest (Laimburg Research Centre, 
2020). Therefore, the standardised technological 
maturity day for Pinot blanc grapes - defined as 
day of year (DOY) when a sugar concentration 
of 220 g/L is reached (DOY220) - was predicted 
for each site and year from the test grape maturity 
data generated by linear regression models. The 
predicted technological DOY220 is related to the 
grape ripening stage, unless otherwise indicated. 
The MA content at DOY220 was also estimated 
using a log-linear regression model. Historical data 
showed an average MA content of 3.0 +/- 0.4 g/L 
at harvest. On this basis, the following values 
were selected as the minimum acceptable values 
for South Tyrolean Pinot blanc grapes at harvest: 
220 g/L TSS, 2.5 g/L MA content and a maximum 
sugar/MA ratio of 88.

4. Wine production and sensory evaluation

Microvinifications were performed with 
three biological replicates for each condition 
(8 vineyards x 2 harvest dates x 3 biological 
replicates, 48 total wines) for harvest years 
2017–2019. The harvest date was chosen 
on the basis of the maturity test data and the  
environmental conditions (e.g., rainfall). Each 
replicate comprised 60 kg of grapes that 
were harvested, weighed and pressed using a 
EuroPressT1 press (Scharfenberger GmbH & Co. 
KG Maschinenbau, Bad Dürkheim, Germany), 
after which 30 mg/L of sulfite was added. Prior 
to fermentation, solid matter was removed 
by spontaneous settling overnight at 4 °C. An 
inoculum for each must was prepared at 20 °C 
with 250 mg/L of Saccharomyces cerevisiae 
strain VL2 active dry yeast (Laffort, Bordeaux, 
France), along with 300 mg/L diammonium 
phosphate. Clear musts were then racked to 
34-litre glass carboys for fermentation with the 
addition of 200 mg/L diammonium phosphate 
halfway through fermentation. After fermentation 
was complete, the wines were cooled for  
12–24 hours at 17–18 °C and then their turbid must 
was static-racked off into nitrogen-saturated glass 
carboys, with an approximate 2-minute injection 
of N2 into each carboy. The carboys were placed 
in a refrigeration cell for 5–7 days, then amended 
with 30 mg/L of sulfite (E 224). Until bottling, 
the carboys were maintained at a temperature of 
18 °C, regularly monitored and adjusted for SO2 
with potassium metabisulfite. Wines were further 
racked whenever necessary. 

For the sensory assessment, a panel of a 
minimum 12 experts (female and male) between 
the ages of 26 and 59 years old was annually 

trained to evaluate Pinot blanc wines using a 
quantitative descriptive analysis. Seven aromatic 
descriptors were selected: apple, banana, 
grapefruit, lemon, peach, pear and pineapple.  
Five gustatory/hedonistic terms were chosen to 
evaluate taste/mouth sensation: acidity, bitterness, 
complexity and overall impression; for further 
information refer to Kadison (2020). Three tasting 
sessions were carried out for each vintage, with 
each session consisting of the entire series of a 
single replicate; i.e., 16 unique wines. Three of 
the 16 wines were randomly chosen and tasting 
was repeated (making a total of 19 wines tasted) 
in order to identify taster error. From the end of 
fermentation until testing, wines were aged in 
carboys (approximately eight months). Data were 
collected using FIZZ Sensory Analysis Software 
(version 2.61, Biosystèmes, Couternon, France) in 
randomised order for each panelist, using random 
identification numbers for each wine.

5. Statistical analysis

Daily temperature measurements were obtained 
from the average of 24-hourly values. Descriptive 
statistics related to the main climate features, 
phenological data and bioclimatic indices 
are hereafter provided and summarised. The 
Hierarchical Cluster Analysis (HCA) was used 
to classify sites based on temperature parameters 
(average and cumulative minimum, minimum 
above 5 °C and above 10 °C, maximum, day above 
35 °C, mean and range temperature), agroclimatic 
indices (GDD and GSR), and potential radiation, 
starting from 1st April to the end of each VS, 
and for each phenological stage (Supplementary 
Data). The parameters had previously been 
normalised in the range 0-1. There are two types 
of HCA, the agglomerative (also known as 
AGNES, agglomerative nesting) and the divisive 
method (DIANA, divisive analysis; Kaufman 
and Rousseeuw, 1990). Due to the number of 
observations in this study, the agglomerative 
approach was preferred, because it aims to 
partition data into a relatively small number of 
clusters (Hastie et al., 2013). It was carried out 
using the factoextra R package (Kassambara 
and Mundt, 2016) and the agnes function; the 
dissimilarity matrix between each observation 
was calculated using the Euclidean method. 
The average approach was used as a clustering 
method (Zepeda-Mendoza and Resendis-Antonio, 
2013). The non-parametric Kendall rank 
correlation between indices, GDD and GSR, 
and each phenological stage and the VS was 
carried out to study the relationship between 
climate parameters and grapevine phenology. 
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Multiple comparisons for unequal sample size 
were made with the least square mean by applying 
Tukey adjustment for group comparison, and 
using lsmeans R package (Lenth, 2016). Pearson’s 
correlation coefficients were computed between 
climate parameters and grape juice content.

The raw data from the sensory analysis underwent 
an initial descriptive statistical analysis to identify 
and remove values for tasters who were unable to 
consistently repeat scores for a given parameter. 
One-way ANOVA was applied on each single 
parameter assessed for the three repeated wines 
from a single tasting session, in order to compare 
the repeatability of the taster with the repeatability 
of the entire panel. Each parameter for which 
the taster’s F-statistic was lower than that of the 
entire panel was not included in the final statistical 
analyses.

Climate conditions, stable carbon isotope fraction, 
must compounds and a selection of sensory 
descriptors and hedonistic terms for wines of 
vintage 2017, 2018 and 2019 were also investigated 
following a two-step multivariate procedure. 
Firstly, a principal component analysis (PCA) 
was carried out on standardised values (z-score); 
the PCA method was selected as a multivariate 
technique that avoids multicollinearity and reduces 
the dimensionality of a large number of variables 
(Koufos et al., 2014). Hence, hierarchical cluster 
analyses of the components (HCPCA) were 
performed using the FactoMineR R package 
(Lê et al., 2008), and the factoextra package was 
used for extracting and visualising the results 
(Kassambara and Mundt, 2016).

To target MA in developmental grapevine berries 
based on GDD accumulation, a model was 
fitted and evaluated (log-linear fit). First, a data 
quality assessment was carried out to check for 
influential observations, Cook’s distance, outliers, 
and standardised residuals with Bonferroni 
p-value < 0.5. The malic model – which was used 
to estimate the MA content in grapevine berries 
as a function of the amount of GDD accumulated 
starting from 1st April – was fitted to MA and 
its efficiency was assessed by applying a 5-fold 
cross-validation using the trainControl function 
from the R package caret (Kuhn, 2008). The k-fold 
cross-validation is a technique for estimating the 
predictive capabilities of a model by randomly 
splitting the original dataset into k partitions; the 
first fold is used for testing and k-1 is used for 
training the model. The procedure is iterated over 
the same dataset for all folds. This method was 
preferred to the leave-one-out cross-validation 

(LOOCV) usually applied to small datasets, 
because it provides a more accurate estimate 
of the test error rate (Gareth et al., 2014) and a 
lower variance than LOOCV (Efron, 1983). The 
higher the k value, the higher the accuracy in 
cross-validation (Yadav and Shukla, 2016), but 
this can lead to overfitting. Therefore, the model 
metrics [coefficient of determination (R2), root 
mean square error (RMSE) and mean absolute 
error (MAE)] were compared across 10-, 5- and 
3-folds (data not shown) and the 5-folds were 
finally selected. This base model was further 
improved with an exhaustive feature selection 
by using the R package leaps (Lumley and 
Miller, 2017). In order for the performance of the 
algorithms to be evaluated against all possible 
combinations of the features considered in the 
dataset [Bayesian Information Criteria, root mean 
square error (MRSE) and adjusted-R2 (adj-R2)]. 
The three best predictive models were selected, 
and their efficiency evaluated by a 5-fold cross-
validation [RMSE, absolute root mean square 
error (ARMSE), proportion of variance (R2), and 
mean absolute error (MAE)]. The performance 
of the models was tested on different metrics 
[R2, adj-R2, Akaike’s Information Criteria (AIC), 
BIC, average prediction error rate (APE) and 
the F-statistic p-value (p-value)]. The predictive 
capability of the four models was finally tested by 
comparing the predicted and the real values.

RESULTS

1. Climatic and phenological data

Descriptive statistics for daily temperatures, 
bioclimatic indices (GDD, GSR) and the sum of 
the number of days with maximum temperature 
above 35 °C for the VS per site are summarised 
in Table 2.

Average air temperature recorded during the 
grapevine vegetative period over the three years 
ranged from 16.84 °C (Tr_2; lowest elevation) to 
18.84 °C (Tr_1; highest elevation).  The average 
minimum temperatures were lowest in Na_2 
and Ep_1 (12.02 and 12.05 °C respectively). 
Meanwhile, the highest average maximum 
temperatures were recorded in Te_1 and Tr_1 
(25.8 and 25.6 °C respectively), with more than 
7 days of temperatures above 35 °C and larger 
thermal excursions. GDD ranged from 1603.1 to 
1972.5 in Tr_2 and Te_1 respectively, while GSR 
ranged from 3717.7 to 4108.2 Wh/m2 in Tr_2 and 
Te_1 respectively. 
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FIGURE 2. Phenological stages. 
The length of the different phenological periods (bd-bloom = budburst-flowering, bloom-ver = flowering-véraison, ver-rip = véraison-
technological ripening) for each vintage (2017, 2018 and 2019), reported as the first and last Day of the Year (DOY) on which 
phenological events took place. The different colours indicate each site with increasing elevation.

TABLE 2. Descriptive statistics.

Period Site Tair avg 
 °C

Tair min 
 °C

Tair max 
 °C

Tair range 
 °C

Tmin5 
°C

Tmin10 
°C

GDD   
°C

GSR   
°C

DDover35  
nr. Day

Potential 
solar  

radiation  
Wh/m2

VS Ep_1
17.46 12.05 23.27 11.21 0.19 2.38 1653.93 3779.06 0.67

124893
+/-0.5 +/-0.5 +/-0.6 +/-0.3 +/-0.1 +/-0.5 +/-116.1 +/-119.7 +/-1.15

Ep_2
17.24 12.33 22.9 10.55 0.16 2.3 1641.78 3762.58 0.67

126015
+/-0.6 +/-0.8 +/-0.6 +/-0.3 +/-0.1 +/-0.6 +/-136.3 +/-145.8 +/-1.2

Na_1
18.37 13.62 23.84 10.22 0.05 1.84 1872.59 4007.58 2

114782.7
+/-0.6 +/-0.6 +/-0.8 +/-0.6 +/-0.0 +/-0.7 +/-136.4 +/-139.2 +/-1.0

Na_2
16.96 12.02 22.86 10.84 0.15 2.45 1612.03 3732.43 1

122911.9
+/-0.5 +/-0.6 +/-0.7 +/-0.4 +/-0.0 +/-0.5 +/-130.2 +/-136.2 +/-1.0

Te_1
18.53 12.65 25.75 13.1 0.11 2.11 1971.5 4108.18 8.67

122232.8
+/-0.5 +/-0.5 +/-0.9 +/-0.7 +/-0.0 +/-0.3 +/-121.8 +/-124.7 +/-0.6

Te_2
16.94 12.1 22.98 10.88 0.13 2.49 1631.91 3754.03 1.33

139877.1
+/-0.6 +/-0.5 +/-1.0 +/-0.5 +/-0.0 +/-0.5 +/-149.9 +/-157.6 +/-1.15

Tr_1
18.84 12.5 25.6 13.11 0.16 2.15 1941.45 4076.76 7.33

123906.4
+/-0.5 +/-0.6 +/-0.7 +/-1.0 +/-0.1 +/-0.4 +/-108.63 +/-111.3 +/-2.1

Tr_2
16.84 12.28 22.46 10.18 0.17 2.46 1603.1 3717.72 0.67

136627
+/-0.6 +/-0.6 +/-1.0 +/-0.5 +/-0.1 +/-0.7 +/-153.6 +/-163.8 +/-1.2

Average daily temperatures, GDD, GSR and sum of days with average temperature above 35 °C recorded during VS 
(1st April - 31 October). For each site, the average of the three vintages (2017 to 2019) +/- standard deviation is reported for 
 each parameter. Abbreviations: Tair avg = average air temperature), Tair min = minimum air temperature, Tair max = maximum air 
temperature, Tair range = thermal excursion, Tmin5 = minimum air temperature below 5 °C, Tmin10 = minimum air temperature 
below 10 °C, GDD, GSR, DDover35 = days with temperature over 35 °C and Wh/m2 = potential solar radiation.
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The DOY of the main grapevine phenological 
stages (budburst, flowering, véraison and 
technological maturity) in the different vineyards 
depended on site elevation. Indeed, a clear gradient 
due to site elevation can be distinguished for 
each vintage (Figure 2 and Table S1). However, 
annual variations related to seasonal temperature 
alterations seem to be more relevant in the 
regulation of phenological stages (Table 1S). 
Budburst occurred much earlier in 2017 for all 
sites (≈1st April), and around five days earlier 
than in 2018 and 2019. The 2018 vintage was 
characterised by lower temperatures in early spring 
and a delayed budburst, then higher temperatures 
in the vegetative season compared to 2017 
(according to the recorded DDover35 values). 
Meanwhile, flowering, véraison and technological 
ripening dates in 2018 were similar to those in 2017 
or even earlier (by approximately 5 days), but in 
2019 flowering and véraison were delayed by 10 
days and ripening by 20 days, because of cooler 
conditions before flowering (May). Therefore, the 
warmest vintage was 2018, with an average VS 
temperature of 18.3 °C, compared to the cooler 
2017 and 2019 vintages with temperatures of  
17.3 and 17.4 °C respectively.

2. Site classification based on climatic and 
phenological features

Zoning and climate suitability for winegrowing 
areas are commonly determined by carrying out 
bioclimatic measurements, which can also provide 
information about the impact of climate change 
on viticulture (Malheiro et al., 2010). One of the 
most used heat unit indices is the Winkler index 
(WI), which measures GDD calculated over the 
vegetative growing period, 1st April - 31 October 
(Winkler, 1974), and GSR, which was recently 
proposed for sugar ripening (Parker et al., 2020). 
Both the indices were analysed in this study in 
order to carry out zoning in the South Tyrolean 
Pinot blanc winegrowing region: Ep_1, Ep_2, 
Na_2, Te_2 and Tr_2 were found to belong to 
the second Winkler region, Na_1 and Tr_1 to the 
third, and Te_1 to the fourth (the warmest region). 
The vineyards were divided into two statistically 
different groups for both GDD and GSR. The first 
group was represented by Tr_1, which had the 
lowest elevation, being located at 223 m a.s.l., 
while the second group comprised sites located 
above 550 m a.s.l. (Ep_2, Na_2, Te_2, Tr_2). 
Vineyards located at middle elevation range, from 
279 to 542 m a.s.l. (Te_1, Na_1, Ep_1), were not 
statistically different from the others. 

The Kendall’s correlation revealed significant 
relationships (p-value < 0.01) between 
phenological DOY and both indices; however, 
GDD was more significant (p = 1.76 x 10-5) 
than GSR (p = 1.17 x 10-4). Thus, GDD was the 
most reliable index for estimating grapevine 
phenological stages for the Pinot blanc variety. 
The sum of heat units, expressed as GDD, is 
lowest between bud break and flowering (average 
of 289.0 +/- 24.4 °C), and is considerably elevated 
during the flowering-véraison period (May to 
end of July; 725.3 +/- 57.2 °C, with a maximum 
value of 849.38 °C and a minimum of 628.1 °C). 
Major variability can be observed in the final stage 
of berry ripening, when cumulated GDD ranged 
between 274.9 °C (Te_1 2018) and 544.8 °C  
(Tr_2 2017), with a mean value of 407.9 +/- 76.2 °C.

Due to the lower discrimination obtained by the 
analysis of GDD and GSR, and in order to better 
classify the vineyards, a further HCA analysis 
was conducted. Four groups that resembled the 
vineyard elevations were observed (Figure S1). 
The first group comprised Tr_1 and Te_1 
(both under 300 m a.s.l.), the second Na_1 (at 
419 m a.s.l.), the third Ep_2, Ep_1, Na_2 (between 
500 m a.s.l. and 650 m a.s.l.)), and lastly, Te_2 and  
Tr_2 the fourth (the two highest sites). Regarding 
the vineyards above 500 m a.s.l., it should be 
noted that the two sites at the highest elevations 
have higher temperatures during the flowering  
and ripening periods than the other three sites 
located above 500 m a.s.l. 

3. Grape ripening

Grapevine maturity tests were performed 
throughout the ripening period until harvest 
(Table S2). Moreover, all ripening parameters 
were predicted by linear regression models to 
DOY220 (TSS 220 g/L) (Table S3), except 
for MA, which was estimated by a log-linear 
regression model.

3.1. Vineyard location and final grape  
sugar/MA content

Close to harvest time, a different trend between 
berry juice components, sugar and MA was 
observed with respect to increasing site elevation 
(Figure 3a). In general, valley sites with warmer 
environmental conditions were associated with 
a lower amount of MA than the cooler, higher 
sites; for instance, the average MA concentrations 
recorded in Tr_1 and Tr_2 were 1.53 +/- 0.38 g/L and 
2.37 +/- 0.40 g/L respectively. On the other hand, 
the average TSS values were 235.06 +/- 4.3 g/L and 
232.74 +/- 10.12 g/L for Tr_1 and Tr_2 respectively. 
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Maturity analyses of grape berries were conducted 
before ripening at different time points as already 
discussed in Materials and Methods, and on the 
day of the harvest the grapes showed a different 
sugar content as the harvest date was chosen taking 
into account both the grape juice composition 
and the environmental conditions at harvest (i.e., 
rainfall). Hence, for standardising purposes, 

all berry compounds were predicted by linear 
regression analysis on the technological ripening 
day (DOY220). The predicted MA content at 
DOY220 resembled the malic content-elevation 
trend observed at harvest, with the lower MA 
content generally recorded in the lower sites in 
comparison to the higher and cooler elevation 
(Figure 3b). 

FIGURE 3. Box plot of MA (g/L) and sugar (TSS g/L) content.
aBox plot of MA (g/L) and sugar content (TSS g/L) in grapevine juice close to harvest time. For each field, the mean of the three 
years and three replicates per year was measured. The range, median and distribution density of each maturity parameter for 
each site, according to a specific elevation, are displayed. The red and the blue lines represent the trend line for sugar and MA 
respectively. 
bBox plot of predicted MA (g/L) was calculated at standardised sugar content (technological maturity = TSS 220 g/L). In blue the 
trend line calculated for the MA content.

3.2. Grapevine juice – climate relationships

In order to explore the relationship between 
berry maturity parameters and climatic variables, 
pairwise correlations using the Pearson method 
were conducted. The significance of the correlation 
coefficient (R) was evaluated using the Holm 
adjustment p-value at three significance levels 
(*** < 0.001, ** < 0.01 and * < 0.5); correlation 
coefficients greater than 0.75 or lower than -0.75 
for negative relationships are shown in bold in 
Table 3. The increase in berry sugar content was 
mainly related to high temperatures (Tair_avg 
and Tair_max, R = 0.88***) experienced during 
the grape vegetative period (budburst – ripening), 
and GSR (Tair_GSR, R = 0.88***), which was 
confirmed as a good predictor for sugar ripening. 
However, this index seemed to fall for organic 
acid content (g/L) in comparison to GDD, 
which showed a significant high correlation, 
R = -0.80*** compared to R = -0.73***. The 
negative correlations observed between GDD 

and total grape juice acidity was mainly due to 
the strong relationship shown by GDD with MA 
content (R = -0.78***), rather than tartaric acid 
content (R = -0.57***). Indeed, tartaric acid 
content is relative stable during berry ripening; 
nevertheless, its loss (R = -0.71***) could be 
explained by an increase in GSR due to climatic 
conditions. Therefore, the composition of grape 
berry may be affected by high temperatures due to 
a concentration effect possibly being triggered by 
water losses.

3.3. Sugar content, MA kinetics and 
bioclimatic indices

The correlations between sugar, MA and the 
two bioclimatic indices were further explored 
by linear and non-linear regression analysis. 
Sugar and MA concentrations in grape juice were 
correlated with “day after véraison”, and GDD 
and GSR over the VS (Figure 4). These analyses 
highlighted two different dynamics occurring 
between sugar concentration and MA degradation. 
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After véraison the rate of increase in sugar 
proceeded smoothly (R2 = 0.69) and it seemed 
to be independent of vineyard elevation, while 
MA degradation was influenced by site altitude. 
Indeed, two data patterns, under and above the 
trend line, can be observed for vineyards located 
below and above 500 m a.s.l. respectively (Figure 
4a). Moreover, the longer ripening periods of 
grapevine located in sites at high elevation resulted 
in a constant increase in the sugar concentration 
and the retention of MA. These vineyards showed 
MA values generally above 2.5 g/L, while at lower 
elevations those values were slightly lower being 
not more than 1.5 g/L (Figure 4a). The use of 
GDD seemed to be more effective for predicting 

MA content after véraison (log-linear correlation, 
R2 = 0.66) compared to GSR (R2 = 0.44), while 
in the case of sugar prediction using GDD, a 
segregation effect based on site elevation was 
observed (Figure 4b). GSR should therefore 
be preferred for predicting sugar concentration 
(R2 = 0.77) over GDD (R2 = 0.57) (Figure 4c). 
In terms of vineyard grouping according to the 
HCA classification, an increase in the R2 values 
of almost all the regression lines was observed 
(Figure 4d). Interestingly, with the same amount 
of GDD, sites located at higher elevations showed 
a more efficient sugar content increase compared 
to those located at lower elevations. 

FIGURE 4. MA and sugar dynamics in Pinot blanc berries.
Scatterplot and regression lines of TSS and MA dynamics over the days after véraison: bGDD and cGSR. The red and the blue lines 
and formula represent trend lines and the equations, for sugar and MA content respectively. dScatterplot and regression lines of the 
sugar (TSS g/L) and the MA dynamics over GDD for vineyard groups classified in accordance with HCA. Circles, triangles and 
squares represent vintages 2017, 2018 and 2019 respectively. Trend lines: dark-green = group 1 (<= 300 m a.s.l.), green = group 2 
(> 300 and < 500 m a.s.l.), orange = group 3 (> 500 and =< 650 m a.s.l.) and dark-grey = group 4 (> 650 m a.s.l.).
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3.4. Effect of climatic parameters, grape berry 
juice at harvest and sensory data

The effect of climatic parameters on the 
appropriate balance between sugar and acidity, 
and the relationship between these parameters and 
must compounds, which determines the aromatic 
profile of South Tyrolean Pinot blanc wines, 
were studied by carrying our a PCA (Figure 5 
and Table S4). The proportion of sugar and 
MA predicted at DOY220 was also included as 
ripeness degree indicator, and the stable isotopic 
carbon fraction of wines, 13C/12C (Table S5), 
was included as a measure of the transpiration 
efficiency of grapevines (thus as a drought stress 
marker). The first dimension retained 38.1 % of 
the explained variance and the second 16.0 %, 
and five PCs accounted for 77.8 % of the total 
variance. PC1 mostly correlated with climatic 
parameters, such as GDD and Tair_avg (0.92 and 
0.89 respectively), as well as Tair_max (0.81), 
but it was negatively associated with MA (-0.92), 
total acidity and Tmin10 (the latter two both 
-0.87) (Figure 5a). In the same direction of GDD 
component, the sensory attributes of banana and 
pear were observed. Moreover, it is worth noting 
that vineyard elevation along with high number 
of days with temperatures below 10 °C enhance 
MA accumulation and decrease the TSS/MA ratio 
resulting in a stronger sourness perception. In 
Figure 5b, observations were grouped according 
to the elevation range (</> 500 m a.s.l.); the two 
groups are clearly distinguished, and segregation 
seems mainly driven by climatic features, such 
as DDover35, Tair_max and Tair_avg. PC2 was 
positively influenced by lemon (0.75), elevation 
(0.66) and sourness (0.65), while DDover35 
(-0.73) and pH (-0.60) were negatively associated 
variables (Figure 5a). Peach, apple and pineapple 
flavours were found to be the most closely related 
to high-quality scores (overall impression), which, 
from our results, appear to be indirectly affected 
by tartaric acid and green aromas (Figure S2b). 
The most appreciated wines were Ep_2 2019, Te_2 
2017 and Na_2 2018, with a mean overall score 
of 5.8 +/- 0.1 and a predicted (DOY220) TSS/
MA ratio of 72.2 +/- 15.8; meanwhile, the lowest 
scores (< 4.5) were associated with a higher mean 
ratio of 96.61 +/- 19.86. Regarding MA content, 
the predicted mean values were 3.15 +/- 0.73 g/L 
and 2.34 +/- 0.45 g/L for the most and least 
appreciated wines respectively. Figure S2 provides 
further information on variable and individual 
contribution to PCs. In the loading and score plots 
of PC2 and PC3 (Figure S2b,e), a high variation 
in the overall impression of wines produced at 
higher elevations compared to < 500 m a.s.l can 

be seen. In particular, higher overall impression 
scores were generally given to the wines produced 
in the upper sites which had been exposed to 
mild temperatures during the vegetative period, 
thus balancing the fruit-herbaceous notes and 
sourness; meanwhile, the hot seasons, which were 
associated with water deficit, resulted in wines 
which received considerably lower final scores.

Based on the PCA, agglomerative hierarchical 
clustering was carried out and observations were 
categorised into four clusters (factor map in 
Figure 5c). Wines from the 2018 vintage were 
clearly separated from those from the 2017 and 
2019 vintages, which were clustered. Moreover, 
a further grouping internal to the vintage 
classification and based on the site elevation 
range was observed, except for Na_2 2018 
(> / < 500 m a.s.l.). 

3.5. Predictive modelling of MA concentration 
in ripening berries

As previously described, the correlation found 
between MA and GDD is stronger than the 
correlation with GSR. If GSR is useful for 
predicting sugar content, GDD is preferrable for 
MA content. Therefore, a model to estimate MA 
concentration in Pinot blanc berries as a function 
of GDD was proposed.

The model was evaluated for influential 
observation, Cook’s distance, and outliers (i.e., 
the standardised residuals with Bonferroni 
p-value < 0.5). The goodness of the fit (RMSE) 
was 0.256 (absolute of 0.091) and the proportion 
of variance explained (R2) was 0.798 (Table 4). 
The model’s MA predictive capacity was also 
evaluated (Figure S3). The difference between the 
observed and predicted values ranged from -1.343 
to 4.031 g/L, the mean of the absolute difference 
was 0.623 +/- 0.629; however, after removing the 
extreme upper values (12.43 g/L), the maximum 
difference dropped to 2.848 g/L and the mean 
decreased to 0.582 +/- 0.508. The model predicted 
the number of GDD at which the amount  of MA 
is around 3.5, 3.0 and 2.5 g/L to be 1358, 1400 and 
1450 respectively. With more than 1510 GDD, 
MA content can fall to below 2.0 g/L. 

The PCA results suggested that other parameters 
affected the MA content in berries, such as 
average, maximum and below 10 °C temperatures, 
which may be not recognised by the linear 
correlation analysis. Therefore, multiple linear 
regression and model reduction were carried 
out on an exhaustive selection of predictor 
variables to improve the predictivity of the model. 
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For simplicity, only models with at least three 
predictors were taken into account and selected 
on the base of metrics, such as BIC, MRSE and 
adjusted-R2 (data not shown). The three most 
reliable models were: i) GDD and minimum 
temperature and < 10 °C temperature as predictor 
variables, ii) GDD, < 10 °C and sum of the days 
with temperatures above 35 °C, and iii) GDD, 
maximum temperature and sum of the days 

with temperatures above 35 °C. They were all 
further evaluated using a 5-fold cross-validation 
approach; the statistical metrics are available 
in Table 4. The first model that included the 
sum of minimum temperatures and minimum 
temperatures below 10 °C showed the best 
performance (the lowest RMSE, 0.252, ARMSE, 
0.091, and MAE, 0.194, and the highest R2, 0.832). 

FIGURE 5. PCA and HCPCA of climatic and ambient variables, must compounds and sensory attributes.
aBiplot of the first two components: individual dots (colours according to elevation) represent wines from different locations and 
production year; the different coloured arrows represent different variables (stable carbon isotopic fraction, temperature, bioclimatic 
indices and days with temperature above 35 °C, elevation, sensory descriptors, final sensory scores and must compounds).
bBiplot of the first two components with individuals grouped according to elevation range. 
cFactor map of the HCA computed in the first and second dimension.
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TABLE 4. Model evaluation, performance comparison and summary of the prediction power.
Model evaluation

Nr. obs RMSE ARMSE R2 MAE
MA ~ GDD 85 0.256 0.091 0.798 0.206

1. GDD-Tair_min-Tmin10 86 0.252 0.091 0.832 0.194
2. GDD-Tmin10-DDover35 86 0.258 0.093 0.818 0.202

3. GDD-Tair_max- DDover35 86 0.259 0.093 0.816 0.201
Model performance

Nr. obs R2 Adj-R2 AIC BIC APE F-statistic 
 p-value

MA ~ GDD 85 0.785 0.782 12.400 19.700 0.246 2.07x10-29

1. GDD-Tair_min-Tmin10 86 0.820 0.813 4.160 16.400 0.232 2.12x10-30

2. GDD-Tmin10-DDover35 86 0.812 0.805 7.870 20.100 0.237 1.24x10-29

3. GDD-Tair_max- DDover35 86 0.810 0.803 8.560 20.800 0.238 1.72x10-29

Model prediction 
MA ~ GDD Model.1 Model.2 Model.3

Mean 0.623 0.567 0.584 0.589
Standard deviation 0.629 0.683 0.696 0.679

Min -1.343 -1.756 -1.740 -2.002
Max 4.031 4.428 4.688 4.445

The metrics for model evaluation were: root mean square error (RMSE), absolute root mean square error (ARMSE), proportion of 
variance (R2), and mean absolute error (MAE). 
The metrics for assessing the model performance were: R2, adjusted-R2 (adj-R2), Akaike’s Information Criteria (AIC), Bayesian 
Information Criteria (BIC), average prediction error rate (APE) and the F-statistic p-value (p-value). Nr. obs = the number of 
observations for the statistics.
For each model, the mean of absolute difference between predicted and real MA values, the standard deviation and the minimum 
and maximum are also reported.

FIGURE 6. Boxplot of the spread of the difference between predicted and measured MA values.
For each model, summary statistics are the median, hinges, whiskers and all outlying points. Model.1 = GDD - Tair_min-Tmin10, 
Model.2 = GDD - Tmin10 - DDover35, Model.3 = GDD - Tair_max - DDover35. 
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The model with GDD, minimum temperatures and 
day with temperature above 35 °C also provided 
good performance, while the third model produced 
the worst scores. The boxplot in Figure 6 shows 
the statistics for the difference between real and 
predicted values (Table S6).

DISCUSSION

Wine style, aroma and flavour are the most 
important factors to take into account when 
determining the harvest date, and they have 
recently become more relevant for winemakers 
than standard physiochemical parameters, such 
as sugar content. In particular, the typical fresh 
notes of the South Tyrolean Pinot blanc wines are 
associated with high acidity; indeed in accordance 
with the production regulations of DOC South 
Tyrol Pinot blanc, this dry wine must be straw 
yellow in colour with green hues, and have a 
pleasant typical aroma and noticeable acidity in 
the mouth. Using this information as a basis and 
after analysing historical data collected on South 
Tyrol, the threshold values used in this study 
for producing typical Pinot blanc wines were 
220 g/L TSS, 2.5 g/L MA content and a maximum  
sugar/MA ratio of 88. Thus, achieving a balance 
between sugar and organic acid appeared to be 
crucial in order to preserve the traditional aroma 
of this wine. 

Currently, Pinot blanc is cultivated within a broad 
elevation range of approximately 200 to 750 m a.s.l. 
in South Tyrol, an Alpine region with very variable 
environmental conditions that can affect individual 
vineyard microclimate, ripening processes 
and final quality of the wine (Ferretti, 2020). 
Interestingly, in the present study, the vineyard 
average temperatures recorded during the grape 
vegetative period varied depending on site 
elevation within a range of 0 to 2 °C, and they 
significantly affected the phenological timing of 
Pinot blanc. This result corresponds to the findings 
of previous studies by Failla et al. (2004) on the 
Nebbiolo grape in the Alpine environment, and 
by Valtellina and Rienth et al. (2020) on Chasselas 
in the AOC-Lavaux region in Switzerland, in 
which the vertical temperature gradient, due to 
elevation, was found to have a direct influence on 
bud break, flowering and technological maturity 
dates. Indeed, air temperature is considered one 
of the most important factors which drive the 
growth and development of grapevines (Winkler, 
1974; Fraga et al., 2019). It should be noted that 
during the short period of analysis (2017–2019) 
a high variability in weather conditions between 
vintages was recorded; the temperature gradient 

linked to site elevation was thus often exceeded, 
which led to large differences in the phenological 
timing between vintages. In a long-term study,  
2012–2018, by de Rességuier et al. (2020) on 
Merlot in the Bordeaux area, the advanced 
timing of phenological stages was associated 
with warmer years, while cooler years caused a 
delay. Moreover, an intra-annual variability in the 
duration of each phenological stage was observed, 
indeed meteorological conditions experienced 
during the vegetative season influenced the 
duration of each stage, especially budbreak and 
maturity (de Rességuier et al., 2020). On the other 
hand, in the present study, phenological timing was 
found to be clearly driven by the elevation gradient 
when each vegetative season was considered 
separately. Our findings are in accordance with 
those reported by Rienth et al. (2020). In our study, 
a relevant vintage effect that influenced both vine 
and berry physiology was observed; however, 
elevation was found to be the leading driver 
of precocity in all the years of the study (2017-
2019). On the basis of this information, as well 
as the bioclimatic indices and derived climatic 
parameters, the Pinot blanc grape growing sites 
were classified using HCA.

The relationship between phenology and 
temperature found in this research confirms that 
the classical GDD index can still be used as a good 
predictor for the timing of phenological events, even 
if over time improved, sophisticated, mathematical 
models have also been developed to this end 
(Fraga et al., 2016; Reis Pereira et al., 2018). It is 
worth noting that more complex indices could be 
tested in the future; e.g., the biologically effective 
degree days (BEDD; Gladstones, 1992), for which 
the potential plant growth is not considered to be 
linear at all temperatures (Anderson et al., 2012). 
By using GDD, it was possible to initially 
distinguish two south Tyrolean Pinot blanc 
growing areas. However, to better investigate 
the effect of temperature on the phenological 
timing and grape ripening processes, the 
influence of warm extreme events, minimum 
and maximum temperature should be considered 
(Malheiro et al., 2010; Koufos et al., 2014; 
Martinez de Toda and Ramos, 2019). Therefore, 
by analysing different bioclimatic variables, 
four main vineyard groups were identified as 
being easily distinguishable depending on site 
elevation. These groups were composed of i) the 
warmest sites with average temperatures over 
18.5 °C (< 300 m a.s.l.) and 7 to 8 DDover35 per 
vegetative season, early bud break and flowering,
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ii) sites with average temperatures of around 18 °C 
and 2 DDover35 with Tair_avg that exceeds  the 
other groups by 1 °C (from 300 to 450 m a.s.l.), 
iii) sites with average temperatures ranging from 
17 to 17.5 °C and located from 500 to 650 m a.s.l., 
and iv)  (the coolest group) sites with average 
temperatures of < 17 °C, located over 700 m a.s.l. 
and with later dates for the phenological stages.  
It should be noted that a simplified analysis based 
on temperature parameters and potential solar 
radiation was applied, and this classification could 
be further improved in the future by taking into 
account other factors which influence cultivar 
behaviour and performance (Ferretti, 2020). 

Different studies have highlighted how temperature 
can actually affect grape composition (i.e., sugar, 
acidity and phenolic compounds), wine quality 
and the aesthetic aspects of the same variety 
cultivated in different locations, due to differences 
in the timing and dynamics of the grape ripening 
process (Ramos et al., 2015; Martinez de Toda 
and Ramos, 2019; Ferretti, 2020). For instance, 
Ferretti (2020) observed that the elevation and 
solar radiation of vineyards in South Tyrol may 
lead to longer or slower ripening periods resulting 
in the development of different Sauvignon blanc 
wine bouquets. In the same way, the aroma of 
Pinot blanc wines depends on the environmental 
conditions under which the grapevine is grown: 
the predominant aromas of wines from warmer 
climatic conditions were pear, quince and exotic 
fruits; moreover, warmer climatic conditions 
can enhance the perception of banana, but 
high fermentation temperature can affect it as 
well (Molina et al., 2008), while water stress is 
here associated with increases in concentration 
of tartaric acid in grape juice, which in turn 
is associated with the presence of green and 
hawthorn aromas in the final wine. The observed 
tartaric acid and water deficit relationship may 
partly be explained by a concentration effect, as 
berry weight increased less during the ripening 
stage (García-Escudero et al., 1995). On the 
other hand, the intensity of green aroma in wine 
was associated with vine growth factors, such 
as water irrigation and nitrogen fertilisation 
(Mendez-Costabel et al., 2014). Pinot blanc 
wines produced from grapes grown in cooler 
conditions (i.e., high elevation during a hot 
season or cooler vintages) were characterised 
by fresh notes of lemon, grapefruit, apple and 
distinctive acidity. In addition, high overall 
scores seemed to be associated with wines 
produced in cool environments, exposed to mild 
temperatures during the VS (with an average 

temperature of 17.05 +/- 0.49 °C) and without 
water stress. It should be noted that a marked 
wine acidity does not always lead to better scores.  
Even though wine freshness is mainly determined 
by low alcohol content and high acidity 
(Morata et al., 2019), excess acidity leaves a tart 
or sour taste (Volschenk et al., 2006). The taste 
of MA has been described as harsh and metallic 
(Vilela, 2019), and it is commonly associated with 
unripe or green-apple notes (Volschenk et al., 2006; 
Bayraktar, 2013; Vilela, 2019); however, different 
flavours can arise depending on the proportion of 
other important compounds (e.g., ethanol, tannic 
acid, sugar, aromatic and mineral substances; 
Bayraktar, 2013). Therefore, in order to produce 
quality wine, controlling the sugar/MA ratio is of 
primary importance. In this study, the wines with 
higher scores overall were those with a predicted 
sugar/MA ratio ranging from 55.8 to 87.4, while 
lower scores were associated with the higher ratio 
of 96.61, thus confirming the assumption that a 
well appreciated South Tyrolean Pinot blanc wine 
should not exceed a sugar/MA ratio of  88. This 
value may be suitable for producing Pinot blanc 
wines with a relatively acidic taste and from light 
to moderate body (Dupas de Matos et al., 2020). 
That said, it is worth noting the difficulty in 
defining wine quality due to its “quasi-aesthetic 
characteristics” and the subjectivity of personal 
taste (Stone et al., 2008).

Monitoring the ripening of Pinot blanc grapes, 
it was noticed that when berry development had 
taken place in warmer conditions, the increase 
in sugar concentration (g/L) was slightly less 
efficient compared to berry development in cooler 
environments, in which slower and smoother  
grape ripening was observed. A general good 
correlation between sugar concentration and 
temperature parameters was observed, in 
particular with Tair_avg and Tair_max. Despite 
this, the temperature range at which sugar 
metabolism enzymes are active vary from 8 to 
33 °C (Iland et al., 2002). The lower sugar 
concentration of Pinot blanc grapes ripened 
in warmer environments is confirmed by 
Hochberg et al. (2015), who observed important 
metabolic changes in vines grown at 35 °C, which 
resulted in reduced photosynthetic activity, an 
accumulation of secondary sugars (raffinose,  
fucose and ribulose) and a reduction in primary  
sugar concentrations (glucose, fructose and 
sucrose). Moreover, under heat stress conditions 
with temperatures ranging from 34 to 42 °C, the 
sugar metabolism of the grape cell suspension 
displayed a switch from the classical invertase 
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pathway to an alternative sucrose breakdown 
pathway leading to glycolysis (George et al., 2015). 
In addition, our results supported the use of the 
novel GSR temperature-based model used to 
determine sugar concentration in ripening berries 
(Parker et al., 2020). Indeed, a high correlation 
value of R = 0.88 between TSS and GSR was 
observed for Pinot blanc grapes; this index is thus 
a promising tool for assisting winemakers in the 
decision-making process during harvest. 

Besides sugar content, the acid content of grape 
juice is a critical parameter which affects wine 
quality (Conde et al., 2007), especially the 
the organoleptic and aesthetic characters of 
Pinot blanc wines as revealed by the sensory data; 
for this reason it was extensively investigated in 
the present study. A general positive relationship 
between MA content in Pinot blanc grapes and 
vineyard elevation was observed, as previously 
reported in the cases of grapes from the Alpine 
winegrowing region Trentino, Chasselas from 
Lavaux region in Switzerland, and Tempranillo 
grapes from the Rioja Spanish province  
(Martinez de Toda and Ramos, 2019; 
Rienth et al., 2020). In particular, grape acidity 
is a function of various exogenous factors, one 
of the most important being berry temperature 
(associated with air temperature and sunlight 
exposure), which can directly influence both 
sugar/organic acid and malic/tartaric acid 
ratios in grape juice, as widely reported by 
the literature (Ribéreau-Gayon et al., 2006; 
Conde et al., 2007; Jackson, 2008). As is known, 
the tartaric acid content of grapes is generally 
unaffected by temperature (Rienth et al., 2016; 
Oliveira et al., 2019); therefore, any differences 
in the total acidity of grape juice at harvest can 
be linked to variations in MA content. Malic acid 
can account for up to half of the total acidity at 
harvest time and tends to decrease as the grapes 
ripen, especially during warm periods at the end 
of the season (Jackson, 2008). Interestingly, when 
investigating the relationship between climatic 
variables and Pinot blanc grape juice composition, 
good negative correlation values were observed 
between the acidity parameters (total acidity, 
tartaric- and malic-acid content) and temperature 
variables, with a corresponding positive 
correlation with grape juice pH. Therefore, 
cooler conditions, related specifically to higher 
elevations or cooler vintages, are associated with 
higher total acidity and MA content and lower pH, 
compared to warmer environmental conditions. 
The negative correlation of temperature with 
MA content is due to its effect on the balance 

between MA biosynthesis and the enhanced MA 
degradation. Indeed, the optimum temperature for 
MA accumulation is between 20 and 25 ºC, while 
above 38 °C synthesis greatly declines. Moreover, 
warm environmental conditions are coupled by 
the increasing activity of mitochondrial malate 
dehydrogenase enzyme responsible for the malate 
breakdown into oxaloacetate (Conde et al., 2007; 
Keller, 2010). Martinez de Toda and Ramos 
(2019) showed how MA concentration decreased 
in Tempranillo grapes within a range of  
0.43–0.62 g/L per 1 °C of increase during the 
VS; moreover, a correlation between the number 
of days with extreme temperatures above 35 °C 
and MA decrease was described. However, 
in cooler climatic conditions (12–22 °C), the 
uncoupling of MA respiration and the import of 
photo-assimilates has been observed at the onset 
of ripening, thus grapevine does not necessarily 
consume MA in lieu of sugar (Rienth et al., 2016). 

In order to access organic acid dynamics in 
Pinot blanc grapes, an initial screening of the 
climatic parameters revealed that GDD showed 
the best negative correlation with total acidity 
(R = -0.80***) and MA content (R = -0.78***). 
In our study, 1450 GDD may be the threshold at 
which a must MA concentration of above 2.5 g/L 
can be obtained; this is the minimum value required 
for producing good quality South Tyrolean 
Pinot blanc wines. Subsequently, the performance 
of different predictive models that take into 
account at least three predictive parameters were 
investigated. Here, the three most reliable models 
are presented. Interestingly, the best model 
incorporates GDD, T_air_min and Tmin10 from 
1st April as predictor variables, which may target 
the malate synthase process. The other two models 
incorporate Tair_max and DDover35 instead, 
and may serve as reduced malate synthesis target 
in combination with the accelerated catabolic 
rate. Recently, Olego et al. (2015) developed a 
model for measuring MA concentration in red 
grapes in order to determine the optimum harvest 
time under Mediterranean conditions. The study 
reported a negative correlation between MA 
content and temperature variables; i.e., the daily 
thermic integral and the Huglin index. However, 
a weak negative correlation with the daily 
thermal range from véraison to the sampling time 
(R = 0.18) was observed. Consequently, in a study 
by Olego et al. (2015), none of the temperature 
parameters was selected as a significant predictor 
for modelling MA. Indeed, the model uses 
some grape juice parameters resulting from the 
destructive analysis of ripening grapes, such as pH 
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and tartaric acid, together with precipitation from 
harvest time to sampling time. In our research, 
it is worth noting that the proposed models can 
be considered to be oversimplified, since other 
environmental variables are responsible for MA 
dynamics, such as canopy management, vine water 
status and solar radiation (Beauchet et al., 2020). 
Overall, the present study is a first attempt at 
describing the Pinot blanc berry compound 
dynamics and the prediction of MA content in 
grapes using a GDD-based model.

CONCLUSIONS

The acidity of grapes and wines is one of the 
main factors to affect the winemaking process 
at different production steps, and it determines 
wine quality by influencing the perceived 
organoleptic and aesthetic characters, as well 
as the stability and aging potential of wines. In 
particular, MA concentration is considered to be 
a central component of berry juice at harvest.  
In this study, a model for monitoring the MA 
content in Pinot blanc grapes was developed for 
the first time for the South Tyrol winegrowing 
region. The climatic variables GDD, Tair_min 
and Tmin10 were significant predictors for 
investigating MA concentration. Therefore, our 
model is an initial step in the development of an 
efficient decision-making tool for managing the 
quality of Pinot blanc wines.

It is recommended to perform analyses of 
the proposed models, as well as to extend 
the modeling period, in order to ensure their 
prediction capability and to enhance the model 
accuracy in view of the complex topography of the 
South Tyrol region. Climate variability can limit 
estimation ability; therefore, model responses 
can differ in other regions and in extreme climate 
situations. The model is an early-step proposal 
that in the future could be easily adapted to other 
grape varieties and winemaking regions. Overall, 
the results obtained provide new insights into 
MA prediction modelling for white grapes. The 
model to estimate MA as a function of GDD 
for Pinot blanc grapes in South Tyrol could be 
a useful tool for harvest date choice to produce 
high-quality Pinot blanc wines. By combining 
this information with that provided by the GSR, 
it may be possible to help winegrowers and 
winemakers in monitoring the sugar/organic 
acid dynamics in developmental grapes, and/
or in finding alternative suitable wine areas for 
Pinot blanc in the light of the future climate 
change scenario.
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