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In the last years the cooperation between the Fondazione Edmund 
Mach (Trentino) and the Laimburg Research Center (South Tyrol) 
was intensified to bundle the expertise of both research institutions. 
The cooperation in the field of apple proliferation (AP) disease be-
came exemplary of how good scientific collaborations between the 
partner institutions is supposed to be. Both provinces - Trentino 
and South Tyrol - have large areas of apple cultivation, which were 
affected by recurrent outbreaks of apple proliferation disease. It was 
therefore evident that relevant discoveries can only be achieved in 
close collaboration and exchange. We discussed, planned, worked 
together, argued, but altogether and most important we grew as a 
team. The complexity of the topic is reflected by the different scien-
tific and technical backgrounds of the researchers involved in the 
projects. This work was also possible thanks to the external contri-
bution of prestigious national and international researchers known 
for their studies on apple proliferation. It should thus not be con-
cealed that we are proud of what we achieved together in the last 
years. These achievements are reflected by numerous scientific pub-
lications, presentations and by this book that we edit as a joint work. 
The book is aimed at scientists in the field, local farmers, students 
and anyone who is interested in apple proliferation. We provide an 
overview of the current state of apple proliferation related research 
(with a focus on Trentino and South Tyrol) and provide an extended 
list of references for further reading. The book is available in three 
languages, Italian, German and English to make its content accessi-
ble to national and international readers. 
Our collaboration is ongoing and we are curious to see which inter-
esting discoveries the future will bring. 

Enjoy reading!

Gianfranco Anfora  
Center Agriculture Food Environment - University  

of Trento/Fondazione Edmund Mach 
 and Katrin Janik  

Laimburg Research Centre

PREFACE
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Phytoplasmas are responsible for several plant diseases worldwide 
with a large economic impact (Weintraub and Beanland 2006). 
One of the most economically important phytoplasmal diseases 
is Apple Proliferation (AP, often also referred to as “apple witch-
es’ brooms”), caused by the cell wall-less bacterium 'Candidatus 
Phytoplasma mali' ('Ca. P. mali'), which reduces fruit size, weight 
and quality in affected apple trees. Yield reduction caused by AP 
in Italy has led to an economic loss of about 100 million Euro in 
2001 (Strauss 2009). The phloem-limited phytoplasmas are trans-
mitted by phloem-sucking insects but can also be spread by hu-
mans through grafting and infected plant material. The aetiological 
agent of AP is mainly transmitted by the two psyllids Cacopsylla 
picta (Förster 1848) (synonym C. costalis) and Cacopsylla melanoneu-
ra (Förster 1848) (C. picta: Frisinghelli et al. 2000; Jarausch et al. 
2003; Carraro et al. 2008; C. melanoneura: Tedeschi and Alma 2004). 
In addition, transmission by the leafhopper Fieberiella florii (Stål 
1864) (Hemiptera: Auchenorrhyncha: Cicadomorpha) has been 
demonstrated (F. florii: Krczal et al. 1988; Tedeschi and Alma 2006; 
General: Alma et al. 2015). As there are no curative treatments for 
the disease, a combination of different preventive strategies, such 
as vector control by means of insecticide treatments, eradication 
of infected trees and use of certified non-infected planting mate-
rial, are currently the only measures to prevent AP spread. During 
the last decade, this management approach allowed an effective 

INTRODUCTION

Figure 1
Schematic overview of interactions 
involved in phytoplasmoses
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limitation of disease incidence in Northern Italy. Nevertheless, in 
some years an alarming recrudescence of witches’ brooms emerg-
es. The reasons of new epidemics are largely unknown; in addition, 
the reasons for the spatial AP outbreaks clustering in certain re-
gions are unknown as well. Therefore, there is an increasing need 
to deepen our knowledge about the disease, the biological system 
and to develop and implement innovative and environmentally 
sustainable disease and pest management programmes. 
Successful AP spread involves bacterial replication in host plants 
and in insect vectors followed by dispersal of the bacteria by the 
latter ones. Tackling AP thus involves a systemic approach intercon-
necting multidisciplinary fields such as bacteriology, plant physi-
ology, entomology and environmental sciences on the molecular, 
macroscopic and geographical level (Fig. 1). Improving coopera-
tional, interdisciplinary research is thus crucial and a prerequisite 
to curtail AP outbreaks in the future. With this book, we give an 
overview about the current situation and the different interdisci-
plinary fields relevant in AP research.
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Geographic distribution and impact of 
AP in European apple growing regions

BONN

HAMBURG

BERLIN

“Altes Land”

    Baden-
Württemberg

Saxony

Lower Saxony

Rhineland
Palatinate

Thuringia

IBBENBÜREN

North
Rhine-Westphalia

Figure 2
Germany and its federal states. 
Federal states shown in blue are 
affected by apple proliferation

Germany
Apple proliferation (AP) has been described in Southern Germany 
already in the 1950s (Kunze 1989). For a long time it was thought 
that the northern range of AP distribution crosses Germany from 
Bonn in the West to Thuringia in the East (Kunze 1989). In 1995 
'Ca. P. mali' was detected in F. florii in Southern Germany (Bliefern-
icht and Krczal 1995) and in 1998, Seemülller et al. published a first 
survey of AP in Germany based on PCR detection of the pathogen. 
These authors extended the northern range of AP in Germany to 
Ibbenbüren in North Rhine-Westphalia not far from the Dutch border 
(Fig. 2), though they were not able to confirm AP infections in the 
important apple growing region of “Altes Land” near Hamburg. In 
the past years, however, AP has spread also into this region and has 
become an increasing concern (Weber and Zahn 2013). In 2004, AP 
was first detected in Saxony (Eastern Germany) and a survey carried 
out from 2008 to 2010 showed a disease incidence of up to 36 % in 
15 – 20 year old orchards (Herzog et al. 2012). Historically, the major 
distribution of AP – accompanied with the highest economic losses 
– is in the southwestern regions of Germany, mainly in Rhineland-Pa-
latinate and Baden-Württemberg (Kunze 1989; Seemüller et al. 1998; 
Jarausch 2007; Jarausch et al. 2007; 2011a). A survey conducted in 
2005 and 2006 revealed infection rates of up to 57 % infected trees 
per orchard (Jarausch 2007). In some abandoned orchards infection 
rates higher than 75 % were reported (Jarausch et al. 2011a). The 
results of these surveys indicated that AP is widespread in Germany 
including the Northern, Eastern and Southern regions. The data of 
Seemüller et al. (1998) demonstrated that AP is not only present 
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in commercial orchards but also widely distributed in low-inten-
sity or scattered orchards and infected trees from these partially 
abandoned orchards are presumed to be an important reservoir of 
infection. AP is considered one of the most important diseases of 
apple in South-West Germany, although extensive yield-loss data 
are missing.

Northern Italy - South Tyrol, Trentino, Piedmont 
and Valle d’Aosta
In the late 1950s and early 1960s first cases of AP were reported in 
South Tyrol (Fig. 3) (Österreicher and Thomann 2003, 2015a). Since 
that time symptomatic trees on vigorously growing rootstocks ap-
peared regularly but sporadically. In 1998 first cases of affected 
trees on M9 rootstocks in Eisacktal/Valle Isarco were reported and 
an increased number of symptomatic trees was documented. Within 
the following two years the disease was reported in all apple grow-
ing districts of South Tyrol, however the areas Burggrafenamt/Bur-
graviato and Vinschgau/Val Venosta were predominantly affected and 
in other districts most incidences were found on hill-sites. In some 
orchards, about 60 % of the trees on vigorous rootstocks were affect-
ed, while orchards with apples on dwarfing M9 rootstocks were not 
that affected (about 5 %), and in the subsequent years the number of 
symptomatic trees declined (Österreicher and Thomann 2015a). This 
first severe outbreak of AP coincided with high densities of C. mel-
anoneura; in 1994, high densities of this insect were found in Eisack-
tal/Valle Isarco and in the end of the ‘90s in Vinschgau/Val Venosta. In 
2001 on hill-sites up to 70 C. melanoneura individuals were found per 
apple tree branch; approximately four times less than in orchards 
located in valleys (Österreicher and Thomann 2003). From that year 
on measures against C. melanoneura were implemented in South 

Figure 3
Autonomous region of Trentino-
South Tyrol (Italy). Districts and areas 
shown in blue are affected by apple 
proliferation
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Tyrol and the density of this psyllid was reduced dramatically, with 
the result that in 2005 this insect was only found on every second 
tree on average (Österreicher and Thomann 2015a).
In 2004, disease manifestation increased in several orchards and 
the following year AP became a South Tyrol wide concern again. 
In 2006, symptomatic trees were found in about 75 % of the moni-
tored orchards (Fig. 4). However, the problem was not equally dis-
tributed: while Eisacktal/Valle Isarco was hardly affected at all, in 
Vinschgau/Val Venosta, Burggrafenamt/Burgraviato and Etschtal/Val 
d’Adige numbers of new reported cases increased (Österreicher and 
Thomann 2003, 2015a).
In 2004 first individuals of C. picta were reported in South Tyrol and 
this vector was found in the following years all over the main apple 
growing regions in South Tyrol, but not in Eisacktal/Valle Isarco (Wolf 
and Zelger 2006). The highest densities of this insect were found 
in Vinschgau/Val Venosta, Burggrafenamt/Burgraviato and Etschtal/Val 
d’Adige; thus, additionally to the treatments against C. melanoneura, 
in 2006 vector management was extended also against C. picta and 
in the following years vector densities decreased (Österreicher and 
Thomann 2015a; Mittelberger et al. 2016).
After a few years of relative relief, disease manifestation increased 
again starting in Vinschgau/Val Venosta and Burggrafenamt/Burgravi-
ato and peaked in 2013. Interestingly, other regions like Eisacktal/
Valle Isarco remained not or much less affected (Österreicher and 
Unterthurner 2014). In the two peak years 2006 and 2013 AP led to 
a total economic damage of about 50 million € in South Tyrol (Ös-
terreicher and Thomann 2015b).
In 2014 till 2018 the situation improved and less than 1 % of symp-
tomatic trees in the orchards were counted (Fig. 4). Due to an en-
forced control strategy, the densities of C. picta and C. melanoneu-
ra decreased from 2012 to 2014 in all monitored regions in South 
Tyrol (Mittelberger et al. 2016). Fischnaller and co authors (2017) 
confirmed this trend also for the years 2014 till 2016. 
In Trentino (Fig 3), the first report of AP infected apple trees dates 

Figure 4
AP infestation in the districts of South 
Tyrol with apple cultivation
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back to the early 1950s (Refatti and Ciferri 1954), but the disease 
appeared rather sporadically. An outbreak was reported in the ear-
ly 1990s, causing considerable economic damage (Vindimian et al. 
2002), primarily in Val di Non (Vindimian and Delaiti 1996).
In order to quantify the disease spread and to understand the pre-
disposing factors, growers in Val di Non carried out a survey of in-
fected trees in 1999 and 2000 (Springhetti et al. 2002). 4.9 and 6.8 
million trees were controlled, i.e. 65 % and 91 % of apple trees as-
set in Val di Non, respectively. The average infection rate increased 
from 0.8 to 1.7 %. In general, the infection rate was higher at higher 
altitudes and in older orchards on more vigorous rootstocks (Sprin-
ghetti et al. 2002). Nevertheless, about 5-10 % of infected trees in 
two-years-old orchards and up to 20 % in some three-years-old or-
chards were found.
Since 2001, the Phytosanitary Office of the Province of Trento per-
formed an official monitoring activity. The survey was extended to 
the whole apple growing area of the province and a potential ef-
fect of differential agronomic measures, cultivar asset or different 
altitudes  was analyzed (Vindimian 2002). Until 2005, the average 
percentage of infected trees ranged from 2.5 to 2.9 %. During this 
period, the highest percentage of infected trees was reported for 
hill–sites of the district Val di Non whose apple growing area account 
for nearly 60 % of the total apple growing area of the Province of 
Trento. In this district, the average disease incidence reached up to 
5.5 %, but in some older orchards planted on vigorous rootstocks 
up to 70 % of the trees showed an infection. The infection rate 
rapidly decreased when uprooting of infected trees became man-
datory and chemical control measures against the insect vectors 
were implemented in 2006. The adoption of recommended control 
actions was fostered by granting growers with a subsidy for uproot-
ing orchards older than 20 years or orchards with more than 20 % 
of infected trees. 
The average percentage of infected trees constantly decreased dur-
ing the subsidized uprooting program from 2006 to 2010, when the 
lowest rate of 0.27 % was reached. The infection rate started to up-
surge in 2012, significantly in Val d’Adige and Valsugana, regions that 
account for 30 % of the total apple growing area of the province. In 
these two districts, the average infection rate rose to 6 % in 2014, 
pushing the average infection rate of the Province of Trento to 2 %. 
In North-Western Italy (Fig. 5), AP has been recorded in two apple 
growing regions, Piedmont and Valle d’Aosta where at the end of the 
1990s and in the first years of the 2000s a severe epidemic occurred. 
In Piedmont, the territories of Alto Canavese (Province of Turin) are 
the historic hotspots of the disease. In Alto Canavese typical cultivars 
are grown in organic and in integrated managed orchards. The ap-
ple production is mainly for the local market. Some records of AP 
infestations arose also from localities of the Province of Turin and 
from the Province of Cuneo, areas characterized by more intensive 
apple cultivation. However, AP outbreaks were rather sporadic and 
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not severe (Minucci et al. 1996; Alma et al. 2000; Pinna et al. 2003; 
Spagnolo et al. 2005). On the other hand, in Valle d’Aosta AP is wide-
spread and represents a serious threat since the 1990s, especially 
in older orchards. In this region disease incidence reached 100 % in 
some orchards (Tedeschi et al. 2002; 2003). After a Ministry decree 
issued in 2006 obligating control measures against AP (Ministero 
delle Politiche e Agricole Forestali 2006), a sanitation programme 
was implemented. Trees should be regularly inspected for the pres-
ence of typical symptoms and infected trees should be removed. In 
case that more than 25 % infection was observed, the whole orchard 
had to be uprooted. As a consequence, the spread of AP declined, 
but surveys are constantly being carried out and treatments against 
the vectors are prescribed in both regions.

AP in other European regions and the Middle East
AP is widespread in apple growing regions in Europe and has been 
recorded in Austria, Belgium, Bosnia and Herzegovina, Bulgaria, 
Croatia, Czech Republic, Finland, France, Germany, Hungary, Italy, 
Norway, Poland, Romania, Serbia, Slovenia, Spain, Switzerland, the 
Netherlands and Turkey (Tedeschi et al. 2013). To provide up-to-
date information about the distribution of different phytoplasmal 
diseases, including AP, a survey about the disease distribution 
and the prevalence of their confirmed and putative insect vectors 
throughout Europe has been performed (Bertaccini 2014). Based 
on these results, a database consisting of maps and detailed tables 
from 28 European and Middle East countries was compiled (COST 
FA0807 2013). 

Figure 5
Autonomous region of Aosta Valley 
and the region of Piedmont. Districts 
shown in blue are affected by apple 
proliferation
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Symptoms

Current measures against AP are consequent treatments against 
the phytoplasma transmitting insect vectors and the removal of in-
fected plant material. Removal of infected plant material requires 
reliable recognition of infected trees. Thus, the ability to recognize 
trees with specific AP symptoms is an indispensable skill of any fruit 
grower in affected regions. An AP infection induces a broad range 
of symptoms in wild and commercial Malus species (Bovey 1963; 
Blattny et al. 1963; Rui 1950; Refatti and Ciferri 1954; Morvan and 
Castelain 1975; Kartte and Seemüller 1988) but symptom expression 
can vary enormously (Schmid 1975).

Specific symptoms	
A symptom is classified as AP specific when unambiguously related 
to an AP infection. AP specific symptoms are the formation of witch-
es’ brooms (an abnormal bush like cluster of dwarfed weak shoots) 
and enlarged and dentate stipules with the latter symptom being 
more difficult to determine on the tree (Seemüller 1990; Jarausch 
2007; Seemüller et al. 2011a) (Fig. 6 and 7). Size and shape of stip-
ules depend on the developmental stage of the affected branch and 
the respective cultivar (Mattedi et al. 2008b; 2008f). Thus, a careful 
comparison of stipules from symptomatic and asymptomatic trees 
of the same cultivar is necessary for adequate disease evaluation. 
Although the presence of specific symptoms indicates an AP infec-
tion, the absence of enlarged stipules or witches’ brooms is not a 
proof that the respective tree is 'Ca. P. mali' free. 

Non-specific symptoms
Some infected apple trees may show symptoms that – when appear-
ing alone - cannot clearly be linked to an AP infection, consequently 
these symptoms are considered non-AP-specific. The contempora-
neous expression of two or more non-AP-specific symptoms may 
though, reliably indicate an AP infection (Thomann and Tumler 2000; 

Figure 6
A healthy shoot (A) compared to 
shoots showing apple proliferation 
characteristic witches’ brooms (B-D)

A) B) C) D)
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Mattedi et al. 2008b; 2008f). Early leaf reddening is easily visible and 
one of the most evident non-specific symptoms of AP disease (Bovey 
1963) (Fig. 8). However, mechanical tree damages, fungal infections 
or certain physiological conditions can also induce foliar reddening 
(Schmid 1975; Mattedi et al. 2008b; 2008f). AP-induced premature 
bronzing is characterized by a certain colour shade and papery leaf 
texture (Mattedi et al. 2008f). Moreover, early leaf reddening as an 
indication for AP infection is considered to vary between cultivars 
and over the years due to climatic conditions (Mattedi et al. 2008f). 
In a study with the cultivar ‘Golden Delicious‘ it could be revealed 
that early leaf reddening affecting the complete canopy was cor-
related to an AP-infection in 86 % of the observed cases (Öttl et al. 
2008). Instead of early leaf reddening, certain apple varieties (e.g. 
‘Gala‘) may show pre-harvest chlorosis, which is a hint for an AP 
infection (if it is not caused by a nutrient deficiency). Infected trees 
often show an earlier bud break in springtime (Schmid 1975; Mat-
tedi et al. 2008f), which can only be observed in a short time inter-
val, making this symptom rather difficult to recognize. AP induced 
stunted branches and rosette formation of apical leaves can emerge 
during summer as well as new shoots from auxiliary buds of the old 
wood (Zawadzka 1976). These symptoms are often coupled with an 
increased susceptibility to powdery mildew (Bovey 1963; Zawadzka 
1976; Maszkiewicz et al. 1979). In some cases, the interpretation of 
new budding may be difficult since it is affected by abiotic factors, 
such as pruning or damaging of the bark. Late blossoming (late flow-
ering) is often defined as a non-specific AP symptom (Kartte and 
Seemüller 1988); however, Mattedi et al. (2008b; 2008f) described 
this symptom as not characteristic for an infection. The autors point 
out that the severity of this symptom depends on the apple vari-
ety and that new planted trees are particularly affected because 
of previous hormonal treatments in the nursery. The non-specific 
symptom of small, taste- and colourless fruits with a long pedun-
culus (Blattny et al. 1963; Zawadzka 1976; Seidl 1980; Schmidt et al. 
2009; Seemüller et al. 2011a) (Fig. 9) is the economically important 

Figure 7
Enlarged and dentate stipules -  
a specific symptom of apple 
proliferation
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symptom of AP since these fruits are not marketable and result in 
a notable reduction of earnings (Herzog et al. 2012; Österreicher 
and Thomann 2015b; Seemüller et al. 2011a). Further non-specific 
symptoms described for AP disease which are not directly evident 
are root malformation (Kunze 1989) or root branching (Guerriero 
et al. 2012b), formation of abnormally formed suckers, growth sup-
pression, reddish winter wood and hooked apical buds (Mattedi et 
al. 2008f). For some Malus taxa also leaf malformation and leaf roll, 
degreening of veins and even vegetation dieback were reported 
(Kartte and Seemüller 1988).

Co-occurrence of symptoms
Specific symptoms or certain symptom combinations are often 
distinct for AP (Thomann and Tumler 2000), but to date, symptom 
expression is rather irregular and no systematic pattern can be ob-
served (Carraro et al. 2004). It is still unclear if differential symptom 
development is related to different pathogen strains, sensitivity of 
certain apple cultivars, phytoplasmal colonization behavior of the 
aerial parts of the tree, environmental factors or certain plant-phys-
iological conditions (Seemüller et al. 1984b; Seemüller 2002; Carraro 
et al. 2004; Seemüller and Schneider 2007; Herzog et al. 2010; Baric 

Figure 8
Early leaf reddening - an unspecific 
symptom of apple proliferation

Figure 9
Small fruits - an unspecific symptom 
of apple proliferation. Left: Apple 
from a healthy tree. Right: Apple 
from an AP infected tree
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et al. 2011b). Thus, comprehensive studies addressing the devel-
opment of certain symptom patterns would be helpful to optimize 
the monitoring strategies for the field. The presence or absence of 
symptom is also associated to the presence or absence of the phy-
toplasma in the aerial parts of the trees. 
Remission of symptoms, a phenomenon known as recovery, was 
described to occur either transiently or permanently in infected 
trees (Seemüller et al. 1984b; Osler et al. 2000; Carraro et al. 2004). 
Recovery is characterized by a cessation of symptoms, but with 
bacteria persisting in the roots (see also chapter “The phenomenon 
of recovery”). The bacteria residing in the roots of recovered trees 
can spontaneously recolonize the canopy and induce symptoms 
again (Carraro et al. 2004). Treatment with resistance inducers and 
plant growth regulators showed only limited and transient effects 
on symptom expression, infection rates and growth rates of apple 
trees infected with 'Ca. P. mali' (Schmidt et al. 2015). Healing of in-
fected apple trees, i.e. the eradication of the pathogen has never 
been reported.

Symptom assessment to determine the degree of 
infestation 
The best period for visual symptom assessment is during harvest 
since most symptoms develop in autumn and compared to spring, 
the number of trees with specific symptoms is nearly doubled (Ja-
rausch 2007). However, an iterative AP symptom assessment all-
over the vegetation period is recommended because several symp-
toms, such as early bud break and premature leaf reddening are 
only displayed in certain time periods. Nevertheless, visual symp-
tom assessment does not guarantee that the entirety of infected 
plants in an orchard can be identified, since symptomless trees can 
be infected as well (see chapters “Latent infected planting material 
– an infectious time bomb?” and “The phenomenon of recovery”). 
This is mainly because the physiological state of the tree, the phase 
of infection, climatic conditions and other factors can affect symp-
tom expression.

Legal regulations
Since 2006 the Italian Ministry of Agriculture prescribes that AP in-
fected plant material must be eliminated to reduce the risk of a fur-
ther AP spread (Ministero delle Politiche e Agricole Forestali 2006). 
The decrees currently in force in both provinces (Province of Bolzano 
and Trento) define witches’ brooms as a specific symptom for AP 
(Provincia Autonoma di Trento, 2003; Autonome Provinz Bozen / 
Provincia Autonoma di Bolzano 2016). Enlarged and dentate stip-
ules, small fruits, early bud break and premature foliar reddening 
are considered AP symptoms when at least two of these symptoms 
occur in combination. Apple trees exhibiting specific symptoms or a 
certain symptom combination must be uprooted by law.
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Host-pathogen interactions 

Like all phytoplasma, 'Ca. P. mali' is a plant pathogen that resides in 
the phloem. 'Ca. P. mali' is present in the apple tree throughout the 
whole year (Baric et al. 2011b), but the concentration of phytoplasma 
in the aerial parts of the tree varies drastically in the course of the 
year (Schaper and Seemüller 1984; Seemüller et al. 1984a; 1984b; 
Loi et al. 2002; Pedrazzoli et al. 2008; Baric et al. 2011b). 'Ca. P. mali' 
recolonizes the aerial parts of the tree starting in late spring/early 
summer, while colonization peaks in late summer and lasts until 
December. With ongoing phloem degradation, the phytoplasma 
concentration in the canopy is further reduced during dormancy 
(Schaper and Seemüller 1984; Pedrazzoli et al. 2008). Therefore, the 
infectivity (i.e. in this case the ability to infect the insect vector) of an 
apple tree might vary throughout the year. In the root system 'Ca. P. 
mali' is present throughout the whole year (Schaper and Seemüller 
1982; Seemüller et al. 1984a; Baric et al. 2011b). The constant phlo-
em renewal in the root system permits the survival of the phytoplas-
mas during winter (Schaper and Seemüller 1982).
Phytoplasmas interact with their plant host on different levels. They 
move through sieve plate pores, interfere with physiological and 
biochemical processes of plants and block the phloem transport by 
obstructing the sieve tubes (Kartte and Seemüller 1991; Lepka et al. 
1999). 'Ca. P. mali' lacks many genes considered to be essential for 
cell metabolism and thus relies on the uptake of nutrients from the 
plant. It can be speculated that phytoplasma assimilate a wide range 
of nutrients and organic compounds from the host cells, probably 
with detrimental effects on the host metabolism. 
Phytoplasmas can influence plant metabolism directly through a 
set of membrane proteins and indirectly through effector proteins 
(see chapter “Molecular aspects of symptom development in the 
apple tree”). In vitro studies demonstrated that the immunodomi-
nant membrane protein Imp from 'Ca. P. mali' interacts with plant 
proteins like actin (Boonrod et al. 2012). This resembles the situation 
of another phytoplasma, 'Ca. P. asteris', whose immunodominant 
antigenic membrane protein Amp binds actin and is hypothesized to 
play a role in phytoplasmal mobility in its host (Galetto et al. 2011). 
Furthermore, Amp of 'Ca. P. asteris' interacts with subunits of the 
ATP synthase of the insect, suggesting that ATP synthase plays a 
role as receptor for cell entry in mid gut and salivary glands of the 
insects (Galetto et al. 2011). These findings indicate an important 
role of Amp in determining insect vector specificity (Suzuki et al. 
2006; Galetto et al. 2008; 2011; Rashidi et al. 2015). Interestingly, 'Ca. 
P. asteris' can modulate its gene expression according to the stage 
of infection and to the host species (Oshima et al. 2011).
Infection with 'Ca. P. mali' can also lead to the production of differ-
ent defence proteins, an increase of phenolic compounds and it 
seems to alter hydrogen peroxide (H2O2) production in host plants 
(see chapter “Molecular aspects of symptom development in the 
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apple tree”). The availability of the AP genome sequence (Kube et 
al. 2008) provides the basis to investigate phytoplasma-host rela-
tionships and bacterial virulence factors. Sequence analyses re-
vealed that the 'Ca. P. mali' genome carries a high number of mem-
brane-associated AAA+- ATPases and proteases (e.g. FtsH encoded 
by hflb/also known as ftsh genes) that may degrade proteins for 
nutrient uptake or dampen the host’s defence reactions (Kube et 
al. 2008) or act as virulence factors (see chapter “Molecular aspects 
of symptom development in the apple tree”). As a consequence of 
these complex interactions, the content of chlorophyll, leaf biomass 
and the amount of soluble proteins considerably decreases, where-
as the content of sugars, starch, amino acids and total saccharides 
significantly increases (Bertamini et al. 2002). Changes in contents of 
pigments, chlorophyll-protein complex and photosynthetic activities 
were observed (Bertamini et al. 2003), as well as changes in vola-
tile organic compounds (Rid et al. 2016). An increased level of sac-
charides has been often interconnected with AP induced symptom 
development in the apple tree, but many questions remain, e.g.: is 
the phytoplasma able to induce all metabolic modifications such as 
hormonal imbalance, sugar reallocation, starch accumulation, etc. 
in the host actively or are they a subsequent result of structural 
changes that can be observed in the colonized phloem? Moreover, 
disturbances of the photosystem can be observed when stress at 
phloem level is taking place (Lemoine et al. 2013). Although phyto-
plasmas directly interact through effectors and membrane proteins 
with its host, the number of phenotypic changes and their intensity 
could be an indirect consequence of changes in phloem physiology, 
tissue occlusion, callose deposition, etc. as described in many stud-
ies (Musetti et al. 2010; 2011a; 2013a; 2013b; Guerriero et al. 2012a; 
Patui et al. 2013; Zimmermann et al. 2015). Thus, first interactions 
during infection might be very specific and localized but it cannot be 
excluded that later consequences are rather “chain reactions” that 
lead to physical changes in the phloem tissues and “simply” cause 
un-concerted physiological imbalances in the host. Which pathways, 
genes and proteins are directly affected by the phytoplasma is still 
poorly understood and unspecific metabolic downstream changes in 
diseased plants might further hamper analyses aiming to detangle 
what is cause and what is consequence. 

Molecular aspects of symptom development in the 
apple tree
For most apple cultivars, an infection with AP does not lead to death 
of the infected tree. Furthermore, a high number of 'Ca. P. mali' in 
the canopy has been described to be a pre-requisite for severe AP 
symptom development (Schaper and Seemüller 1984; Seemüller et 
al. 1984a; 1984b; Bisognin et al. 2008b). Phytoplasma concentration 
in the roots, on the other hand, does not seem to impact colonisa-
tion intensity of the canopy and AP symptom expression (Baric et 
al. 2011b) (see chapter “Host-pathogen interactions”). However, the 
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exact molecular mechanisms underlying symptom development are 
not known in detail, yet. In a study using tobacco and periwinkle 
as model plants, an AP infection induced impaired carbohydrate 
translocation to sink tissue (Lepka et al. 1999). This impairment of 
carbohydrate transport has been correlated to the development of 
growth inhibition (stunting) and the converse accumulation of car-
bohydrates in the source tissue as the reason for leaf degreening 
(chlorosis) (Lepka et al. 1999). In line with the hypothesis that an 
alteration of the carbohydrate metabolism is a reason for stunting 
and chlorosis, it could be shown that key genes of the Calvin cycle 
and of chloroplast photosynthesis pathways are altered in AP infect-
ed plant material. These alterations could be involved in AP symp-
tom development (Aldaghi et al. 2012; Luge et al. 2014). A study on 
the early onset of chlorophyll degradation in leaves of AP infected 
apple trees revealed that the pathway underlying AP-induced chlo-
rophyll degradation is the same pathway involved in seasonal leaf 
senescence. The authors of this study also showed that AP infected 
plants contain less chlorophyll, degrade it earlier but slowlier and 
contain less catabolites when chlorophyll breakdown is completed 
(Mittelberger et al. 2017b). Giorno et al. (2013) describe a decrease of 
glucose, fructose and sorbitol contents in AP infected apple plantlet 
tissues, whereas sucrose and starch were increased. The authors 
of this study also found PR-6, PR-8 and Mal d 1 genes being upregu-
lated. The encoded gene products are thus likely involved in the in-
duction of the immune response in the AP-infected plantlets. Giorno 
and co-authors (2013) also hypothesized that the increased amount 
of soluble sugars might act as a signalling strategy in the plant which 
affects gene expression.
The fact that symptom development might result from an effect 
of 'Ca. P. mali' on plant hormonal regulation has been suggested 
by many authors and shown in different studies (Luge et al. 2014; 
Zimmermann et al. 2015; Tan et al. 2016; Janik et al. 2017). Aldaghi et 
al. (2012) claim that profound disturbances in the balance of growth 
regulators are the cause of a broad array of symptoms in affected 
trees. In their study, they cluster the AP affected apple genes into 
three ontology groups: i) genes involved in photosynthesis pathways 
are de-regulated and might thus be relevant for AP symptom devel-
opment, e.g. leaf chlorosis and carbohydrate metabolism mediated 
symptoms; ii) genes that affect senescence and auxin accumulation 
and might thus be responsible for the inhibition of apical dominance 
(stunting) and have an effect on flavonoid biosynthesis (leaf redden-
ing); iii) genes that regulate plant defence, in particular leading to the 
reduction of H2O2 and thus increase the susceptibility and multipli-
cation of the bacterium in the host (Aldaghi et al. 2012). In line with 
this, Musetti et al. (2004) found that H2O2 is accumulated in recov-
ered, symptomless AP infected trees. The authors thus concluded 
that a H2O2 accumulation counteracts AP symptom development.
Even though many authors interpret findings on the metabolomic 
level as the reason for certain symptoms, direct proofs and molec-
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ular links of this interconnection remain scarce. The spatio-tempo-
ral programme of disease development in the tree is not easy to 
dissect. Especially since the natural infection is difficult to model, 
most studies rely on analyses performed with model plants (e.g. 
Arabidopsis spp. or Nicotiana spp.) or with apple seedlings but rare-
ly involve fully grown apple trees. However, even if the apple tree 
is used to study disease progress, the seasonal and physiological 
state (e.g. the immunological defence abilities) plays a crucial role 
for the respective analyses. Bacterial factors that allow the pathogen 
to establish and maintain an infection, so called virulence factors or 
effector proteins, are key players during disease development of 
different phytoplasmoses (Hoshi et al. 2009; MacLean et al. 2011; 
Sugio et al. 2011a; 2011b; Maejima et al. 2014). Often knowledge 
about Aster yellow witches’-broom (AYWB) phytoplasma or other 
phytoplasma species is used as a proxy to explain findings of AP 
symptom development. Just recently the AP effector ATP_00189, 
which shares sequence and functional homology to the AYWB ef-
fector SAP11, has been identified (Siewert et al. 2014; Janik et al. 
2017). Similar to AYWB-phytoplasma SAP11, ATP_00189 of 'Ca. P. 
mali' binds teosinte/cycloidea/pcf (TCP) class II transcription factors 
of its host plant (in case of 'Ca. P. mali' TCPs from Malus × domestica) 
(Sugio et al. 2011a; Janik et al. 2017). These transcription factors are 
regulating hormone expression during different growth, defence 
and developmental plant processes (Cubas et al. 1999; Lopez et al. 
2015; Ikeda and Ohme-Takagi 2014). Furthermore, a study with Nico-
tiana benthamiana expressing the SAP-like ATP_00189 of 'Ca. P. mali' 
revealed that this effector changes volatile expression, leads to de-
fects in glandular trichome development and suppressed jasmonic 
acid responses (Tan et al. 2016). It is hypothesized that phytoplasmal 
AAA+ ATPases play a role in 'Ca. P. mali' virulence (Seemüller et al. 
2011b; 2013). In particular the AAA+ ATPase AP460 might be part 
of a phytoplasmal secretion system acting as an AP virulence factor 
(Seemüller et al. 2018b). However, the exact function and the role of 
these proteins during infection remain elusive.
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Since phytoplasma are phloem-restricted inside the plant, they can 
only be transmitted from plant to plant by phloem-sucking insects 
or by intact phloem-phloem connections. Transmission by insect 
vectors is considered the most important and most relevant way 
of AP spread. However, transmission of 'Ca. P. mali' can be obtained 
also by grafting, by natural root bridges or by dodder (Cuscuta sp.) 
(see also chapter “'Ca. P. mali' host plants”). Transmission from 
infected apple to the experimental host periwinkle (Catharanthus 
roseus) or from periwinkle to tobacco was achieved by different 
dodder species (Carraro et al. 1988; Seemüller et al. 2011a; Luge et 
al. 2014). Dodder is a parasitic plant that forms phloem connections 
between different plants and hence can transmit phytoplasma be-
tween different host plants. 
Several tree species have been shown to be interconnected through 
their root systems (Tarroux et al. 2014). This phenomenon, called 
anastomosis, has been reported in more than 150 species (Bormann 
1966). Root anastomoses assume vital functions for the tree com-
munity by improving nutrient’s absorption, root system longevity, 
tree stability and by mitigating competition between old and young 
trees (Drénou 2003). Formation of natural root bridges seems to 
be very common also with apple trees (Vindimian et al. 2002; Cic-
cotti et al. 2008). Epidemiological studies suggested a possible role 
of root bridges in the spread of AP (Bliefernicht and Krczal 1995), 
especially in medium-aged and old apple orchards (Vindimian et al. 
2002; Baric et al. 2008). Applications of the systemic, phloem trans-
ported herbicide glyphosate to apple tree stubs and the subsequent 
translocation of this herbicide to adjacent trees via root connections 
were used to proof the presence and frequency of root contacts 
between trees within an apple orchard (Ciccotti et al. 2007; Baric et 
al. 2008). Root bridges occur not only between viable apple trees, 
but also among just planted young plants and vital residuals of old 
roots left in the soil after uprooting the previous orchard. These 
leftover roots have been found to be viable up to 5-6 years from the 
uprooting of the actual tree and they still could be tested 'Ca. P. mali' 
positive (Mattedi et al. 2008a). Evidence of 'Ca. P. mali' transmission 
through root bridges has been demonstrated in an experimental 
trial where infected seedlings were potted together with uninfect-
ed seedlings (Ciccotti et al. 2008). Root bridge formation occurred 
from the first year on and increased in frequency in the following 
years. The natural transmission of 'Ca. P. mali' by root bridges was 
proven by specific PCR and immunofluorescence studies (Ciccotti 
et al. 2008). Experimental data suggest that root connections seem 
to play a role for the spread of 'Ca. P. mali'  in older orchards and 
between trees on vigorous rootstocks (Baric et al. 2008). However, 
root-to-root transmission of 'Ca. P. mali' could also be observed in 
trees growing on the less-vigorous rootstock M9, commonly used in 

Insect vector independent 'Ca. P. mali' 
transmission
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commercial orchards (Lesnik et al. 2008). 
'Ca. P. mali' can be transmitted experimentally from tree to tree by 
grafting. Scion grafting is usually a more efficient method to transmit 
'Ca. P. mali' than grafting small tissue pieces (Seemüller et al. 2011a). 
However, the success of graft-transmission by scions is dependent 
on the season since colonisation of the aerial parts of the tree is 
subjected to seasonal fluctuation of 'Ca. P. mali' presence (Seemüller 
et al. 1984b; Pedrazzoli et al. 2008; Baric et al. 2011b; Schmidt et al. 
2015) (see also chapter “Host-Pathogen interactions”). Pedrazzoli et 
al. (2008) demonstrated that transmission rates by chip budding 
were very low between March and May but highest between June 
and August. Consequently, experimental inoculations, e.g. for AP 
resistance screening, are done in the latter period of the year. Vice 
versa, grafting of scions removed during the dormancy period low-
ers the risk of accidental transmission from latent infected material 
during the production of planting material. Roots are constantly col-
onised by the phytoplasma (Seemüller et al. 1984b) and are there-
fore a good donor tissue for 'Ca. P. mali' transmission by root scion 
grafting in other periods of the year. Grafting material from trees of 
unknown infectious status to susceptible indicator plants (indexing) 
has become a common method to determine if the donor plant is 
infected with phytoplasma or viruses (European and Mediterranean 
Plant Protection Organization 1999, 2017).
In vitro culture was successfully employed to maintain 'Ca. P. mali' in 
micropropagated Malus cultivars (Jarausch et al. 1996). Using in vitro 
grafting, phytoplasma could be transmitted to healthy in vitro plants 
with very high efficiency (Jarausch et al. 1999). This in vitro approach 
has then been applied to screen Malus sieboldii and M. sieboldii × M. 
× domestica hybrids for AP resistance (Bisognin et al. 2008a). On the 
other hand, grafted rootstocks derived from nurseries that unwit-
tingly used infected scions constitute a risk of introducing infected 
material to an orchard (see chapter “Latent infected planting mate-
rial – an infectious time bomb?”). However, 'Ca. P. mali' is not trans-
mitted by seeds (Seidl and Komarkova 1974).

The latency period referred to AP is defined as the time span from 
the infection to the development of visible symptoms in the plant. 
Until now it is not exactly defined wheather the latency period ends 
with the development of specific or unspecific symptoms. Bovey 
(1963) reported an average latency period of 1.8 years after artifi-
cial infection by chip budding or bud insertion. Infection by scion 
grafting might result in faster symptom development, due to higher 
phytoplasma transmission rates/size of the plant of the rootstock. 
Scion grafting from symptomatic field-grown trees on healthy M9 
rootstocks in February resulted in symptom development in 67.4 % 
of the plants in July and 84.8 % in October of the same year (Schmidt 

Latent infected plant material – an 
infectious time bomb? 



25

et al. 2015). In a six-year study of a new planted orchard, Unterthurn-
er and Baric (2011) demonstrated that AP symptoms are expressed 
in most cases within one-and-a-half to two years after infection. 
However, the authors of this study also reported a prolonged laten-
cy period of four years in one of the infected trees.
In one study, conducted in north-eastern Italy it could be deter-
mined that 10 % of randomly chosen non-symptomatic trees are ac-
tually AP infected (Mattedi et al. 2008c). In the years 2003 and 2006 
a similar study was performed in South Tyrol; 2.3 % and 10.5 %, 
respectively of non-symptomatic trees from two apple orchards 
were infected (Baric et al. 2007). In the years 2015 till 2017 one out 
of 1000 non-symptomatic trees from two South Tyrolean apple or-
chards were AP positive (unpublished data). 
Attention must be drawn on the fact that only healthy, 'Ca. P. mali' 
free and certified planting material is used for production and prop-
agation. Infected planting material might facilitate the spread of the 
disease to areas so far free of AP. Therefore, 'Ca. P. mali' is listed as 
a quarantine organism in many countries and must be absent in 
planting material. The import of Malus material from known AP host 
countries is regulated throughout the world (https://gd.eppo.int/ 
taxon/PHYPMA/categorization). It is known that – despite all efforts 
– AP is sometimes detected in mother stock and nursery material 
(W. Jarausch, personal communication). Due to the latency period, 
visual inspections are not sufficient to recognize the entirety of 
infected but asymptomatic plant material. This applies to mother 
stocks which are pruned severely every year for scion production 
as well as for the young plants in the nursery. Therefore, random 
PCR screening of mother plants is applied as a new strategy to en-
sure healthy planting material (at least in Germany) (W. Jarausch, 
personal cummunication). The risk of transmission by grafting using 
a latent infected cultivar scion is considered lower, especially if the 
budwood has been taken in the dormant season (see chapter “Insect 
vector independent 'Ca. P. mali' transmission - root bridges and graft 
transmission”). There are reports of symptomatic trees already in 
the first year of plantation, e.g. Mattedi et al. (2008a) detected 1.1 % 
infected trees in a newly planted experimental orchard. From 2001 
to 2004, PCR tests of material ready for planting revealed latent in-
fections from about 1 ‰ plants in Germany (unpublished data) and 
3 ‰ plants in Italy (unpublished data). Mattedi et al. (2008c) found 
two out of 300 trees infected before plantation in the Province of 
Trento (Italy). 
In the roots of latent trees, 'Ca. P. mali' is present throughout the 
whole year in concentrations comparable to those in symptomatic 
trees (Baric et al. 2011b). In contrast, 'Ca. P. mali' is colonizing just 
sporadically and in very low concentrations the aerial parts of latent 
trees (Seemüller et al. 1984a; 1984b; Loi et al. 2002; Pedrazzoli et al. 
2008; Baric et al. 2011b). Since insect vectors feed on leaves and 
green parts of the plant, latently infected or recovered, i.e. symp-
tomless trees (see also the chapter “The phenomenon of recovery”) 
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might thus represent an inoculum source for vector dependent 
'Ca. P. mali' transmission. Still it remains unclear, how many phyto-
plasma need to be taken up by an insect vector to establish an in-
fection in the latter one. Therefore, the question, if 'Ca. P. mali' host 
plants with a very low titer in aerial parts have an infective potential 
at all, remains unanswered.

Field grown apple trees infected with 'Ca. P. mali' can show a spon-
taneous remission of symptoms, a phenomenon described as re-
covery (Osler et al. 2000). It was found that within 10 years, 71 % of 
AP symptomatic trees of the cultivar ‘Florina’ recovered; this corre-
sponds to a mean annual rate of symptom remission of 29 % (Osler 
et al. 2000). Recovered trees are not free of bacteria and did thus not 
literally recover from the infection, but only from the typical symp-
toms. Despite the disappearance of symptoms, the bacteria can still 
be detected in the roots, but not in the canopy (Carraro et al. 2004). 
However, the apple tree remains infected and is able to transmit 
the phytoplasma via root grafting but not via bud grafting (Carraro 
et al. 2004). After a non-symptomatic period, the tree can change its 
status from asymptomatic to symptomatic and phytoplasma can 
be detected in the aerial parts of the tree again (Osler et al. 2000; 
Carraro et al. 2004; Seemüller et al. 1984b; 2010b). Interestingly, so 
far this phenomenon could only be observed in the field but could 
not be induced under experimental conditions, yet (Carraro et al. 
2004; Schmidt et al. 2015).
Unravelling the mechanisms underlying recovery may provide im-
portant insights to better understand the AP disease process. The 
molecular mechanism of recovery involves the activation of several 
branches of the plant immune response. An increase of H2O2 in af-
fected tissues is characteristic for recovered plants, possibly directly 
or indirectly counteracting the bacterium (Musetti et al. 2004). Fur-
thermore, recovered trees show increased levels of Ca2+ concentra-
tions which might be connected with the observed increased callose 
deposition and protein accumulation in the leaf phloem (Musetti et 
al. 2010). The increased callose expression has been hypothesized to 
lead to (reversible) phloem plugging and thus blocks an effective dis-
tribution of the bacteria or hampers bacterial effector protein trans-
location leading to a loss of symptoms (Musetti et al. 2011b; Guerrie-
ro et al. 2012a). However, no correlation between phloem mass flow 
limitation and phytoplasma titre was found in Arabidobsis infected 
with 'Ca. P. asteris', which suggests that sieve element proteins are 
involved in defence mechanisms other than mechanical limitation of 
the pathogen (Pagliari et al. 2017). Musetti and co-workers (2013b) 
hypothesize that during infection a cascade of hormonal activations 
leads to either symptom-development or recovery: salicylic acid (SA) 
is immediately increased upon infection and antagonizes jasmonic 
acid (JA)-dependent defences, leading to a symptomatic infection 

The phenomenon of recovery
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and accumulation of H2O2 which in turn leads to increased levels 
of SA. The authors suggest that this SA induction might counteract 
symptom development and thus leads to recovery (Musetti et al. 
2004; 2013b). The idea of such SA induction is supported by the 
fact that recovered trees are less prone to symptom induction by 
re-infection than trees that have not been previously recovered, 
suggesting a type of induced resistance (Osler et al. 2000). Patui 
et al. (2013) showed that recovered trees accumulated JA via an 
induction of the oxylipin pathway and demonstrated that SA levels 
are declined in recovered trees, underlining the reciprocal antago-
nism between JA and SA pathways. These authors further suggest 
that the observed peroxidase and oxidase activity in combination 
with a decreased reactive oxygen species (ROS) scavenging activi-
ty could lead to an H2O2 accumulation during recovery. However, 
despite the lack of clarity if H2O2 accumulation is cause or conse-
quence, the simultaneous activation of JA and SA during recovery is 
a possible scenario which might indeed enhance defence respons-
es (van Wees et al. 2000).

Phytoplasma diseases are difficult to control due to the biphasic 
phytoplasmal life cycle in the plant and in the insect vector and be-
cause of the different ways of transmission. Since direct treatments 
are lacking, resistant plant material would be a great benefit.
Search for natural genetic resistance to AP within the taxa Ma-
lus has been carried out extensively (Kartte and Seemüller 1991; 
Seemüller et al. 1992). Among Malus × domestica, the following cul-
tivars are mentioned as (relatively) tolerant to AP infection: ‘Lord 
Lambourne’ (Friedrich 1993), ‘Clivia’, ‘Herma’ (Friedrich and Rode 
1996), ‘Roja de Benejama’ (Invasive Species Compendium 2017), 
‘Antonovka’, ‘Cortland’, ‘Spartan’, ‘Yellow Transparent’, ‘Wealthy’ 
(Németh 1986; Thakur and Handa 1999), ‘Melrose’ (Richter 2003), 
‘Goldstar’, ‘Rubinola’, ‘Lotos’ and ‘Rosana’ (Pflanzenschutzdienst 
Baden-Württemberg 2003). However, tolerance evaluation of these 
cultivars was rather based on empirical field observations assess-
ing symptom occurrence than on a screening through targeted in-
fection trials. In extensive studies done by Seemüller and co-work-
ers (1992) a systematic and controlled survey was performed using 
different genotypes comprising hundreds of established and ex-
perimental rootstocks of Malus × domestica as well as wild and 
ornamental Malus genotypes. These were tested by graft-mediated 
infection in long-term field trials leading to the observation that 
resistance (i.e. lower symptom expression and/or lower bacterial 
titers in the infected plants) was characteristic only to some exper-
imental apomictic rootstocks derived from one specific accession 
of M. sieboldii (Kartte and Seemüller 1991; Seemüller et al. 1992; 
2008; 2018a; Bisognin et al. 2008b; Seemüller and Harries 2010). 

Resistant plant material – the ideal 
solution?
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Nevertheless, these promising resistant M. sieboldii rootstocks are 
not directly suitable for commercial apple growing, given that sci-
ons grafted on these varieties mostly develop vigorous and less 
productive trees than on the standard rootstock M9. To maintain 
the resistance characteristics and improve the agronomic value of 
the rootstock resistant M. sieboldii genotypes were crossed within 
the SMAP project with the standard rootstock M9 (Bisognin et al. 
2009; Seemüller et al. 2010a; Seemüller and Harries 2010; Jarausch 
et al. 2010; 2011b). The development of simple sequence repeat 
(SSR) markers and the selection of true recombinant clones were a 
challenging aspect due to the high level of apomixis of M. sieboldii. 
Apomixis is the production of genetic identical offspring despite 
pollination of the mother plant with a genetically diverse cultivar 
(Koltunow 1993), a characteristic that highly reduces the genera-
tion of recombinant genotypes. The breeding program was further 
hampered by the fact that M. sieboldii introduced hypersensitivi-
ty to latent apple viruses into some of the progeny and that the 
M. sieboldii derived clones had to be micropropagated to achieve 
efficient clonal production (Bisognin et al. 2008b; Liebenberg et al. 
2010). Nevertheless, a screening for resistance using the in vitro 
graft technique (Jarausch et al. 1999) followed by controlled infec-
tions allowed the selection of several resistant genotypes. Data 
from eight years field trials confirmed that the resistance could 
be inherited to the breeding progeny and that mainly among the 
offspring of progeny 4608 x M9, resistant genotypes were identi-
fied showing pomological properties similar to M9 (Seemüller et al. 
2018a). This progeny is also tolerant to latent apple viruses. The 
most promising rootstocks are now entering the phase of agro-
nomic field studies in Germany and Italy (Seemüller et al. 2018a).

The insect vector’s feeding behaviour is relevant for spreading the 
phytoplasma. A polyphagous vector likely may inoculate a larger 
variety of plant species compared to a monophagous vector (Wein-
traub and Beanland 2006). C. picta is described as monophagous on 
apple (Malus spp. and M. × domestica) (Ossianilsson 1992; Weintraub 
and Beanland 2006; Alma et al. 2015). Instead, C. melanoneura is 
described as widely oligophagous on hawthorn (Crataegus spp.) and 
on apple (Ossianilsson 1992; Tedeschi et al. 2008). F. florii is polyph-
agous, feeding on several plants, mainly Rosaceae (Swenson 1974; 
Tedeschi and Alma 2006).
Using PCR detection, the pathogen could be observed in naturally 
infected trees of several wild Malus species and of domestic apple 
(Seemüller et al. 2011a). Controversial reports exist regarding the 
natural occourrence of 'Ca. P. mali' in hawthorn. Tedeschi and Alma 
(2007) and Tedeschi et al. (2009) found this plant naturally infected, 
though, Mayer et al. (2009) did not find naturally infected hawthorn 
in another geographical context. There are also several reports 

'Ca. P. mali' host plants
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of 'Ca. P. mali' detection (by PCR) in wild or cultivated plants: ha-
zel (Corylus avellana) (Marcone et al. 1996), pear (Pyrus communis), 
Nashi pear (Pyrus pyrifolia), Japanese plum (Prunus salicina) (Lee et al. 
1995), hornbeam (Carpinus betulus), bindweed (Convolvulus arvensis) 
(Seemüller 2002), sweet cherry (Prunus avium) and oak (Quercus ro-
bur and Quercus rubra) (Seemüller et al. 2011a).
In graft inoculation experiments 58 ornamental and wild Malus spe-
cies and subspecies as well as 40 hybrids of different Malus species, 
which were used as rootstocks, could be infected with 'Ca. P. mali' 
(Kartte and Seemüller 1988, 1991). However, hawthorn could not be 
successfully infected experimentally (Mayer et al. 2009). As described 
in the chapter “Insect vector independent 'Ca. P. mali' transmission – 
root bridges and graft transmission”, 'Ca. P. mali' can also be experi-
mentally transmitted to other plant species by dodder or by grafting. 
With these methods 'Ca. P. mali' could be transmitted to periwinkle 
(Catharanthus roseus) (Marwitz et al. 1974; Carraro et al. 1988), celery 
(Apium graveolens) and tomato (Solanum lycopersicum) (Seemüller 
et al. 2011a), as well as to the different tobacco species Nicotiana 
occidentalis, N. tabacum, N. clevelandii, N. quadrivalvis (Seemüller et 
al. 2011a; Luge et al. 2014) and N. benthamiana (Boonrod et al. 2012).
The potential role of the above-mentioned 'Ca. P. mali' host plants 
for AP spread remains unclear, since successful transmission in the 
field furthermore requires an insect vector that feeds on the phloem 
of the respective plant host and is adapted to enable 'Ca. P. mali' 
transmission. So far, there is no evidence of an involvement of wild 
plants other than hawthorn as reservoirs for the pathogen in the 
epidemic cycle.

The plant microbiome is the entirety of microorganisms living in or 
on a plant. It plays a fundamental role in plant health and produc-
tiveness (reviewed in Turner et al. 2013). Non-pathogenic bacteria 
residing inside the plant tissues are called endophytic bacteria and 
the entity of these plant colonizing bacteria makes up the endo-
sphere. This endosphere is densely populated by non-pathogenic 
microbial endophytes inhabiting all possible niches within the plant 
(Hardoim et al. 2015). Endophytic colonization of the xylem vessels 
has been frequently reported (Germaine et al. 2004; Compant et al. 
2005; Lòpez-Fernàndez et al. 2015), and even the phloem, the most 
microbe-restricted part of the plant, is –albeit to a lower extent- col-
onized by endophytes (Bulgari et al. 2011; Pažoutová et al. 2012; Hilf 
et al. 2013).
Infection with phytoplasmas affects the composition of endophytic 
communities and it is conceivable that microbial endophytes may 
in turn influence the infectious process or trigger plant recovery 
(Kamińska et al. 2010; Grisan et al. 2011; Bulgari et al. 2011; 2014). 
Some studies exploring how the plant microbiome alleviates phy-

Interactions between the endophytic 
microbial community and phytoplasmas 
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toplasma disease focussed on mycorrhizal symbioses (Lingua et al. 
2002; Garcia-Chapa et al. 2004).
An effect of the widespread and well-characterized biocontrol 
fungal endophyte Epicoccum nigrum on 'Ca. P. mali' infection has 
been documented in the model plant Catharanthus roseus (Musetti 
et al. 2011a). This study showed that co-inoculation of E. nigrum in 
'Ca. P. mali' infected C. roseus leads to a reduction of AP symptoms. 
However, the underlying mechanisms of the E. nigrum-phytoplas-
ma interaction are still unclear. It can only be speculated whether 
the positive effects induced by E. nigrum are directly exerted by the 
endophyte (e.g. by producing antimicrobials active against the phy-
toplasma) or indirectly mediated by an altered plant immunity. Bul-
gari et al. (2012; 2014) reported that 'Ca. P. mali' influences bacterial 
endophyte communities present in the roots of apple trees. The 
authors observed that in AP diseased plants these endophyte com-
munities were less diverse and differentially assembled compared 
to those present in uninfected plants. The 16S rDNA of Pseudomo-
nadales and Sphingomonadales was detected in roots of healthy, 
but not in diseased plants. DNA from Burkholderiales was also more 
frequently isolated from healthy roots than from diseased ones. 
Certain bacterial taxa such as Xanthomonadales, Actinomycetales, 
Legionellales and Acidimicrobiales appear to preferentially colonize 
infected plants. On the other hand, Lysinibacillus colonies were iso-
lated only from healthy plants (Bulgari et al. 2012).
Several microorganisms associated with either non-infected or AP 
diseased plants comprise strains that are known to exert a potential 
biocontrol or protective role against certain plant pathogens (Duffy 
and Défago 1999; Ait Barka et al. 2000; Schouten et al. 2004; Kavino 
et al. 2007; Compant et al. 2008; Choudhary and Johri 2009; Verha-
gen et al. 2010; Trivedi et al. 2011).
It is known that many endophytes produce secondary metabolites 
and other active compounds and thus have antibacterial and anti-
fungal properties against pathogens. Some endophytes can elicit 
plant-defence mechanisms and therefore act as resistance induc-
ers (reviewed in Romanazzi et al. 2009 and Compant et al. 2013). 
Several studies have shown that systemic acquired resistance (SAR) 
is involved in the recovery phenomenon (Osler et al. 2000; Muset-
ti et al. 2005; 2007) (see also chapter “The phenomenon of recov-
ery”). Therefore, understanding the role of endophytes during the 
induction of recovery of AP-infected plants is interesting since this 
might provide a possibility to identify a sustainable control measure 
against AP.
Recent studies have been shown preliminary results on a promis-
ing activity of a set of symbiotic microorganisms isolated from host 
plants and insect vectors of phytoplasmas. These include one Xan-
thomonadaceae and several Bacillus isolates (Naor et al. 2015). In 
particular, the Dyella-like bacterium (DLB; Iasur-Kruh et al. 2017b) 
isolated from the planthopper Hyalesthes obsoletus, the main vector 
of 'Ca. P. solani' (aetiological agent of Bois noir disease of grapevine, 
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Quaglino et al. 2013), was able to inhibit growth of the cultivable 
Mollicute Spiroplasma melliferum (a model for phytoplasma inhibi-
tion studies, Naor et al. 2011). Furthermore, DLB reduced symptom 
severity and led to an increased recovery rate of infected plants 
(Iasur-Kruh et al. 2017a; Naor et al. 2017).
According to these recent findings, non-fastidious microorganisms 
that share both host organisms (plant and insect) with the respective 
pathogen may hold the key to a novel, up-to now hardly explored 
approach to discover new microbial biocontrol tools also against AP.
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Taxonomy, phylogeny and molecular 
characterization of 'Ca. P. mali'

AP phytoplasma are taxonomically defined as 'Candidatus Phytoplas-
ma mali' (Seemüller and Schneider 2004). The provisional 'Candida-
tus' status is used because these microorganisms are unculturable 
and Koch’s postulates cannot be fulfilled, 
'Ca. P. mali' belongs to the family of Acholeplasmataceae (order 
Acholeplasmatales) of Mollicutes, a large class of bacteria contain-
ing various pathogens including Spiroplasma (Entomoplasmales) 
(Oshima et al. 2013; Siewert et al. 2014). Like all other members of 
the class Mollicutes, 'Ca. P. mali' is characterized by the absence of 
a cell wall and by an obligate parasitic life cycle in the phloem of the 
plant which hampers its in vitro culturing. The genus 'Candidatus 
Phytoplasma' experienced a large genetic radiation that generated 
at least 40 different species affecting a variety of host plants; the 
timing of this radiation is still unknown as well as the age of diversi-
fication of Phytoplasma from other Acholeplasmatacae (Kube et al. 
2012). Although there is a certain specificity between phytoplasmas 
and their hosts, phytoplasmas of the same species can occasionally 
infect different plants, rendering the epidemiology extremely com-
plex (Lee et al. 2000). 'Ca. P. mali' is closely related to 'Candidatus 
Phytoplasma pyri', the causal agent of pear decline; these two are 
in turn closer related to 'Candidatus Phytoplasma prunorum' (caus-
ing European Stone Fruit Yellows) and more distant to 'Candidatus 
Phytoplasma spartii' (Seemüller and Schneider 2004). These four 
phytoplasmas belong to the 16SrX phytoplasma group (Lee et al. 
1998; Marcone et al. 2004).
'Ca. P. mali' is characterized by a small genome arranged in a single, 
linear chromosome. The genome differs in several aspects from that 
of other phytoplasma species (Kube et al. 2008) and is genetically 
highly dynamic with a low GC-content (Jarausch et al. 2000; Bai et 
al. 2006; Sugio and Hogenhout 2012). Phytoplasma classification 
systems were based on 16S rRNA sequence diversity. Primers that 
specifically amplify phytoplasmal 16S rRNA genes have been widely 
described and are used for diagnosis (Deng and Hiruki 1991; Ahrens 
and Seemüller 1992; Lee et al. 1993; Namba et al. 1993; Schneider et 
al. 1993; Gundersen and Lee 1996). A commonly used phytoplasma 
classification system involves the analysis of the RFLP pattern of a 
16S rRNA amplicon (Lee et al. 1998): based on this classification, 
'Ca. P. mali' belongs to the 16SrX-A subgroup as described above.
Discriminating among genetic variants of the 'Ca. P. mali' species 
is a key prerequisite to study AP outbreaks in different European 
regions. A classification of 'Ca. P. mali' based on the analysis of more 
(also non-ribosomal) genes and with higher discriminating power 
has been provided. This molecular typing allows a clearer differen-
tiation between different strains within a phytoplasm species (Smart 
et al. 1996; Schneider et al. 1997; Jarausch et al. 2000; Danet et al. 
2011; Baric et al. 2011a; Martini and Lee 2013; Seemüller et al. 2013; 
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Šeruga Musić and Skorić 2013; Valiunas et al. 2013). In particular, 
Multi-locus sequence typing (MLST), a method based on the analysis 
of variations at multiple genome sites, allows the analysis of intra- 
and inter-species relationships (Danet et al. 2011; Casati et al. 2011; 
Janik et al. 2015). In this method, several different genetic areas of 
the phytoplasma genome (loci) are analyzed and a strain-specific 
typing code is generated.
The ability to detect higher genetic diversity allows studying the geo-
graphical distributions of different phytoplasma strains, identifying 
mixed infections, and evaluating virulence and associations between 
certain strains and insect vectors. The advantage of MLST studies 
lies in the possibility of a fine-tuned typing by analyzing and com-
paring sequences of different loci. A drawback, however, is that even 
though evolutionary processes can be analyzed, many common 
MLST analysis programmes (e.g. eBURST) do not consider differen-
tial likelinesses of certain mutational events in different gene groups 
(e.g. considering conserved/unconserved functions). Seemüller and 
colleagues (Seemüller et al. 2010b; 2011b) for example used the hflB 
and imp genes to suggest an association between certain strains 
and virulence. A role of hflB and imp in virulence is assumed and the 
authors showed a correlation between certain sequence variants of 
the hflB gene and strain virulence. However, the biological role of the 
encoded proteins during phytoplasmal infection is not yet fully un-
derstood (see chapter “Molecular aspects of symptom development 
in the apple tree”). While these two molecular markers turned out to 
be highly polymorphic, stable SNPs have been found in the nitrore-
ductase gene which led to the commonly used subtype definition of 
“AT-1”, “AT-2” and “AP” strains (Jarausch et al. 2000). Another typing 
approach based on the 16S rRNA and the rpl22 gene (encoding L22) 
revealed an insect (vector)-strain correlation in South Tyrol (North-
ern Italy) (Baric et al. 2011a). C. melanoneura harbored 'Ca. P. mali' 
strain AT-1 and C. picta harbored AT-2 (Baric et al. 2010a; 2011a). 
Results further indicated a spatio-temporal distribution pattern: the 
AT-1 strain was prevalent before 2005 in this region, while the AT-2 
strain was detected in 2006 for the first time, i.e. two years after 
the first discovery of C. picta (Baric et al. 2011a). Shortly after the 
appearance of C. picta, a strong outbreak of AP appeared peaking 
in the year 2006 (see chapter “Northern Italy - South Tyrol, Trentino, 
Piedmont and Valle d’Aosta”).
Transmission of 'Ca. P. mali' by C. picta was shown by different in-
dependent studies in Italy and Germany (Frisinghelli et al. 2000; 
Seemüller et al. 2004; Jarausch et al. 2004a; Carraro et al. 2008; Op-
pedisano et al. 2019b). Interestingly, transmission trials of 'Ca. P. 
mali' with C. melanoneura succeeded only in North-Western Italy and 
Trentino (Tedeschi et al. 2003; Tedeschi and Alma 2004; Mattedi et al. 
2008d; Oppedisano et al. 2019b) but failed in Germany (Seemüller 
et al. 2004; Mayer et al. 2009). These findings led to the hypothesis 
that certain 'Ca. P. mali' subtypes might be specifically associated 
with certain C. melanoneura populations in different regions (Mayer 
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et al. 2009). Thus, genetic typing data may help to explain local and 
periodically occurring outbreaks of AP and its association to certain 
insects. A future approach should be to combine data from phy-
toplasma typing, strain-vector associations, and insect population 
genetics and behaviour to develop models and allow a prediction 
of AP spread. This indeed requires a profound knowledge about 
parameters affecting the highly complex biological system of AP 
dissemination. Applying knowledge from molecular typing and se-
quence analyses could further reveal factors involved in virulence, 
vector association and eventually allow a kind of molecular source 
tracking to trace the source of infection. Any typing approach is lim-
ited to the kind of loci analyzed and thus strongly depends on the 
relevant problem and question addressed in the respective study. 
Thus, the analysis of different loci often makes it difficult to compare 
and interpret data from different authors and studies. In future it 
is thus recommended to use a uniform typing method to study the 
spatio-temporal distribution and spread of 'Ca. P. mali'.

Molecular diagnosis

In the last decades, different assay types have been used for phy-
toplasma diagnostics. These diagnostic tests range from biological 
assays in which suspicious infected material is grafted to woody in-
dicator plants or serological assays using specific antibodies against 
'Ca. P. mali', e.g. enzyme-linked immunosorbent assays (ELISA) or 
immunofluorescence detection. However, these techniques are of-
ten work-intense, have a low sensitivity or are prone to generate 
false-negative results. For a reliable and less cumbersome detection 
of 'Ca. P. mali' in plants and in insects, different molecular tools have 
been established. All of them are based on the detection of AP spe-
cific DNA. PCR amplification of AP specific DNA regions is the most 
sensitive and reliable diagnosis tool. Most authors follow procedures 
developed by Kirkpatrick et al. (1987), Ahrens and Seemüller (1992) 
and Maixner et al. (1995) for DNA extraction and phytoplasma DNA 
enrichment using phloem tissue of apple trees. The method of Doyle 
and Doyle (1990) is widely used for DNA extraction from plants and 
insects as well (Firrao et al. 1994; Tedeschi et al. 2002; Carraro et al. 
2008). 
Nested PCR, a highly sensitive DNA amplification involving two sepa-
rated PCR runs, has been employed for the detection of 'Ca. P. mali' 
in plants and psyllids using universal primers (P1/P7 + F2n/R2) and 
16SrX group specific primers (P1/P7 + fO1/rO1) (Lee et al. 1995; Lo-
renz et al. 1995). Nested PCR is advisable if low concentration or an 
uneven distribution of the pathogen in the host is suspected. Due to 
the genetic similarity within AP group phytoplasma, specific identifi-
cation often requires further steps, such as amplicon digestion with 
different restriction enzymes and subsequent RFLP analysis or se-
quencing (Kison et al. 1994; Lee et al. 1995; Lorenz et al. 1995; Razin 
and Tully 1995; Gundersen and Lee 1996; Smart et al. 1996; Jarausch 
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et al. 2000). An immunocapture PCR (IC-PCR) protocol has been pro-
posed by Heinrich et al. (2001) for a sensitive, reliable and reproduc-
ible large-scale detection of 'Ca. P. mali'. Protocols for differentiation 
of AP strains were published by Jarausch et al. (2000), Casati et al. 
(2010) and Baric et al. (2011a). Different quantitative real-time PCR 
protocols have been developed for AP in plants and insects based 
on SYBR Green (Jarausch et al. 2004b; Galetto et al. 2005; Torres et al. 
2005), TaqManTM (Baric and Dalla Via 2004; Aldaghi et al. 2007; 2008) 
and EvaGreen® technologies (Monti et al. 2013). The described PCR 
methods require specific lab equipment and must be performed by 
experienced personnel. In the last years, loop-mediated isothermal 
amplification (LAMP) has become an interesting, fast, cheap and sen-
sitive on-site diagnostic method for phytoplasma detection (Notomi 
2000; Dickinson 2015). Several reports present promising results 
that LAMP might be a reliable diagnostic method for AP in the future 
(Neumüller et al. 2014; De Jonghe et al. 2017).
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Apple proliferation spread over long 
distance

After the first report on apple proliferation from the 1950s in the Prov-
ince of Trento (Rui 1950), it was Bovey (1963) who described the epide-
miology and was the first to link the disease to certain vector insects 
that allow a progressive - but not rapid - spread in the area (Bovey 
1971; Amici et al. 1972). The investigations immediately focused on 
some groups of Hemiptera, in particular on leafhoppers and plantho-
ppers (collectively known as Auchenorrhyncha) which were already 
demonstrated to be vectors of several other phytoplasmas. For this 
reason, Auchenorrhyncha species were strongly suspected of being 
potential vectors of the causative agent of AP (Kunze 1976). Field col-
lections in apple orchards were conducted and molecular analyses 
performed to find the responsible disease vectors (Refatti et al. 1986; 
Carraro et al. 1988; Kunze 1989). The first transmission experiments 
conducted with 'Ca. P. mali' indicated that two hoppers, the leafhop-
per Artianus interstitialis (Germar 1821) and the xylem feeding frog-
hopper (or spittlebug) Philaenus spumarius (Linnaeus 1758) were able 
to acquire and transfer the causative agent from infected celery to 
apple seedlings (Hegab and El-Zohairy 1986). However, these findings 
could not be confirmed by other researchers (Frisinghelli et al. 2000). 
So far, although various phloem feeding hemipterans showed to 
be occasional carriers of 'Ca. P. mali', only three species have been 
proven and are acknowledged to be AP vectors. They are the two 
psyllids Cacopsylla picta (Foerster 1848) (syn. C. costalis) and Ca-
copsylla melanoneura (Foerster 1848) (Hemiptera: Sternorryncha: 
Psyllidae), and the leafhopper Fieberiella florii (Stål 1864) (Hemiptera: 
Auchenorrhyncha: Cicadellidae) (Frisinghelli et al. 2000; Tedeschi et 
al. 2002; Jarausch et al. 2003; Tedeschi and Alma 2006; Carraro et al. 
2008; Alma et al. 2015; Oppedisano et al. 2019b). The vector ability of 
these species has been proven by laboratory transmission trials and, 
similar to other phytoplasma vectors, they were able to transmit the 
etiological agent 'Ca. P. mali' in a persistent-propagative manner 
(Weintraub and Beanland 2006). Propagative means that the patho-
gen can multiply in insects; on the other hand, persistent means that 
the insect remains inoculative for life (Fletcher et al. 1998).
Phytoplasmas can be ingested during phloem sap feeding, but do 
not necessarily multiply in the respective insect. Therefore, is the 
detection of a phytoplasma in a phloem-feeding insect not per se 
proving that the respective insect is also able to transmit the patho-
gen. The replicative process in the insect body requires the passage 
of phytoplasmas from the gut epithelium to the salivary glands – a 
highly concerted process of bacterial adaptation to the vector insect 
(Hogenhout et al. 2008; Alma et al. 2015). Thus, the capacity of an in-
sect vector to transmit the ingested phytoplasma can be proved only 
by transmission trials. Here, infected insects are released to feed on 
healthy host plants which are subsequently analyzed to evaluate 
infection status (Bosco and Tedeschi 2013).
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Biology, ecology and vectoring capability 
of AP vectors

Cacopsylla picta and Cacopsylla melanoneura
The genus Cacopsylla is the largest genus of the family Psyllidae 
including more than 400 recognized species (Ouvrard 2017). The 
genus comprises all important vectors of fruit tree phytoplasmas 
(Hodkinson 1974). 
Cacopsylla picta (Fig. 10) is distributed across Europe and Asian Mi-
nor whereas C. melanoneura (Fig 10) is widespread across the Pale-
arctic region. Both species are univoltine (i.e. they have one genera-
tion per year) and overwinter in adult stage (Lauterer 1999; Mattedi 
et al. 2008d; Jarausch and Jarausch 2010; Jarausch et al. 2011a; 2014; 
Tedeschi et al. 2012) on shelter plants, mainly conifers (Čermák and 
Lauterer 2008; Pizzinat et al. 2011). At the end of the winter adults 
migrate back (remigrants) to their host plants where copulation, ovi-
position and nymphal development take place. 
Cacopsylla melanoneura is oligophagous on plants of the genera Ma-
lus spp., Crataegus spp., and occasionally Pyrus spp. while C. picta is 
strictly monophagous on Malus spp. In Italy, C. melanoneura migra-
tion from overwintering sites to the orchards has been recorded 
between the end of January and mid-March while C. picta migrate 
from end of March to April. The newly emerged adults progressive-
ly leave the host plants until June (C. melanoneura) and July (C. pic-
ta) (Mattedi et al. 2008d; Tedeschi et al. 2012). Larval development 
takes four to five weeks; the newly hatched imagines (emigrants) 
remain in the orchards for about two weeks before migrating to 
their overwintering sites. AP psyllids young adults are light green, 
with a mesothorax yellowish banded. Later their color is dirty yellow 
or orange-colored with more or less extensive dark brown or black 
markings (Ossianilsson 1992). During hibernation the body color-
ation changes to black-brown (Lauterer 1999). Forewings are color-
less, veins in old specimens are dark brown or black, pterostigma 
is fuscous. In C. picta, the overall length of males is 2.86-3.24 mm, 

Figure 10
Example of an adult female 
of C. picta (Emigrant) and 
of C. melanoneura (Remigrant)

C. picta C. melanoneura
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of females 3.14-3.43 mm and, a female may lay approximately 160 
eggs (Ossianilsson 1992). In C. melanoneura, overall length of males 
is 2.52-3.10 mm, of females is 2.95-3.30 mm (Ossianilsson 1992) and 
each female may lays about 200 eggs. 
Morphological discrimination of adult C. melanoneura and C. picta 
from other Cacopsylla species is difficult (Tedeschi et al. 2009) and 
even more complicated at nymphal stages. PCR-based approaches 
have been developed that allow discrimination of different Cacopsyl-
la species and thus complement classical morphological species de-
termination (Tedeschi and Nardi 2010; Oettl and Schlink 2015).
The spatial distribution, natural infection rate and transmission 
capacity of C. picta and C. melanoneura are heterogeneous among 
different geographic regions. In North-Eastern Italy, Germany and 
other East European countries both C. picta and C. melanoneura oc-
cur sympatrically, i.e. the insects can occur together in the same 
geographical area, but C. picta has a major vector role (Frisinghelli 
et al. 2000; Jarausch et al. 2003; 2004a; 2007; Mattedi et al. 2008d; 
Oppedisano et al. 2019b). Carraro et al. (2008) proved that C. picta 
adults are already highly infective when moving from shelter plants 
to apple trees and Jarausch et al. (2011a) showed that the vectors 
remain infective during their entire presence in apple orchards. Te-
deschi et al. (2003) evidenced the importance of the overwintered 
adults of C. melanoneura in vectoring 'Ca. P. mali', due to the longer 
period spent in the apple orchards and a higher proportion of 'Ca. P. 
mali'-infected specimens compared to newly emerged adults.
In Germany, Jarausch et al. (2007; 2011a) found transmission rates 
of 8 to 45 % and 0 % in overwintering adults of C. picta and C. mela-
noneura, respectively. A six years-study carried out in Trentino 
(Northeastern Italy) confirmed the higher transmission efficiency of 
C. picta with 4.1 % infected test plants compared to C. melanoneura 
with 0.36 % (Mattedi et al. 2008e). After a sudden outbreak of the 
disease observed in some apple-growing areas of Trentino-South 
Tyrol in 2011, acquisition and transmission trials were again carried 
out to evaluate the new vectoring status of the two main vectors 
and, among all life stages, the transmission efficiency reached 1.5 % 
in C. melanoneura and 10.2 % in C. picta (Oppedisano et al. 2019b). 
Other studies have also shown, that psyllids transmit phytoplasma 
as both adults and nymphs (Tedeschi and Alma 2004; Jarausch et al. 
2004a; Jarausch et al. 2011a; Oppedisano et al. 2019b).
For C. melanoneura infection rates were found to be less than 1 % 
in Germany, Northern Switzerland and Eastern France (Mayer et al. 
2009). This is in contrast to C. melanoneura in North-Western Italy 
where Tedeschi et al. (2003) reported that 45 % of C. melanoneura 
individuals collected from a 100 % AP-infected orchard were tested 
positive for 'Ca. P. mali'. For C. picta, in contrast, the natural infec-
tion rate was found to be high across several studies (Jarausch et al. 
2003; 2004a; Mattedi et al. 2007; 2008e; Carraro et al. 2008; Baric 
et al. 2010b). A characterization of C. picta in North-Eastern Italy, 
showed an average infection of 'Ca. P. mali' of 45 % in the overwin-
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tered and 14 % in newly emerged C. picta adults (Carraro et al. 2008). 
Another important factor in the vector capacity of C. melanoneura is 
the role of host plants. C. melanoneura collected from different host 
plants subsequently showed differential host plant preferences on 
hawthorn Crataegus monogyna (Jacquin 1775) and apple and might 
be genetically separated (Malagnini et al. 2013). This is in line with 
German C. melanoneura populations that prefer hawthorn as their 
primary host that might explain the scarce importance of C. mela-
noneura as a vector of AP in Germany (Mayer et al. 2009). Different 
transmission efficiencies due to different adaptations of psyllid pop-
ulations and certain phytoplasma strains cannot be excluded (Te-
deschi and Nardi 2010). In this respect, Baric et al. (2011a) showed a 
genetic correlation between certain 'Ca. P. mali' strains and C. picta 
or C. melanoneura, respectively. Even after all the experiments con-
ducted in the past years the actual impact of C. melanoneura in the 
AP spread remains not fully clear. 
The phytoplasma concentration in an insect vector depends on the 
phytoplasma concentration in the source plants (Tedeschi et al. 
2012), the duration of the acquisition period and the ability of the 
phytoplasma to accumulate within the insect vector (Hogenhout 
et al. 2008). Pedrazzoli et al. (2007) reported that both psyllid vec-
tors collected in Trentino were equally able to acquire 'Ca. P. mali', 
but C. picta constantly reached a higher phytoplasma titre than 
C. melanoneura; this data was recently confirmed by Oppedisano 
et al. (2019b). The phytoplasma titre significantly increased in both 
species when the psyllids were kept after the acquisition for up to 
4 days, on healthy test plants. Similarly, the detection of low phyto-
plasma concentrations in a German population of C. melanoneura is 
considered the reason why this species has no relevance as a vector 
of apple proliferation in Germany (Mayer et al. 2009). The minimum 
phytoplasma concentration necessary for an effective transmission 
might be influenced by different factors such as psyllid species, pop-
ulation and phytoplasma strain.
Aside from the acquisition of infected phloem sap by ingestion, an-
other way of phytoplasma dissemination represents the transovarial 
or ‘vertical’ pathogen transmission. In this case phytoplasma gets 
transmitted vertically from 'Ca. P. mali' infected mothers to their 
offspring. Recently, Mittelberger et al. (2017a) showed that C. picta 
vertically transmits 'Ca. P. mali'. According to this study a critical 
phytoplasma concentration threshold is necessary for a successful 
maternal transmission of phytoplasma. Moreover, the phytoplas-
ma titre in newly emerged F1 adults was similar to that in infect-
ed parental individuals, indicating that transovarially infected F1 
adults are as infective as remigrants. In contrast, the possibility of 
a transovarial transmission was investigated in C. melanoneura by 
(Tedeschi et al. 2006) and, even if it could not be excluded, has not 
been demonstrated.
A systematic monitoring of the psyllid populations and a survey of 
the symptom evolution is carried out each year in a representative 
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number of apple orchards of the Provinces of Trento and Bolzano, 
providing the basic information for the technical advisory service to 
recommend the correct control strategies to the producers. Figure 
11 represents the territorial observations done in these two prov-
inces in the recent years (modified from Oppedisano et al. 2017 for 
Trentino and from Fischnaller et al. 2017 for South Tyrol). 

Fieberiella florii
The leafhopper Fieberiella florii (Stål 1864) (Fig  12) belongs to 
the Deltocephalinae subfamily (Hemiptera: Cicadelllidae) and 
is widely distributed across the European continent as well as 
in North America where it is an allochthon species (van Steen-
wyk et al. 1990). This leafhopper is univoltine and overwinters 
as nymphs on ornamental hosts such as privet (Ligustrum spp.), 
boxwood (Buxus spp.), myrtle (Myrtus spp.), hawthorn (Crataegus 
spp.), firethorn (Pyracantha spp.), ceanothus (Ceanothus spp.), 
Cotoneaster (Cotoneaster spp.), crabapple (Malus spp.) and apple 
(Malus × domestica) and as eggs on ornamental hosts and decid-
uous fruit trees (Swenson 1974). F.  florii has two main peculiar 
chromatic characters that make the species easily recognizable 
from all other European leafhoppers (excluding congenerics): (1) 
a thick black stripe running eye to eye at the height of the pas-
sage from vertex to frons and (2) a diffuse occurrence of small 
black dots on the fore body and posterior wings which are both 
mostly brownish with some white and black patches. In contrast, 
nymphs are bright green-yellowish endowed of numerous setae at 

Figure 11
Apple psyllids population density 
and AP psyllids-infection rates in 
Trentino-South Tyrol
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the end of the abdomen and still presenting the small black dots 
along their body. F. florii can live on numerous shrubs and trees 
among which it prefers Rosaceae plants where it also overwinters 
as nymph; adults occur from May to October (Swenson 1974). 
In North America F. florii is considered one of the most import-
ant vectors of the X-disease agent ('Ca. Phytoplasma pruni', 16SrIII 
group) (Gold and Sylvester 1982; van Steenwyk et al. 1990). Given 
its vectoring potential, at the end of the 1980s, F. florii was assumed 
to be a potential vector of the 'Ca. P. mali', on the basis of symp-
tom expression and fluorescence microscopy (Krczal et al. 1988). 
Tedeschi and Alma (2006) confirmed the competence of F. florii in 
vectoring 'Ca. P. mali' through transmission trials with a 0.7-2.2 % 
likelihood of transmission by a single specimen. Molecular analyses 
of field collected specimens, revealed a natural infection rate of 5.2 % 
in insects collected in apple orchards and 20 % on wild plants (haw-
thorn, bramble, privet) (Tedeschi and Alma 2006). Thus F. florii infec-
tion rates were higher compared to C. melanoneura originating from 
the same area. However, the relative risk of apple tree of being 
infected by F. florii is considered low because of its low occurrence 
in apple orchards (3-9 specimens/orchard/week) and relatively in-
efficient transmission capability (Tedeschi and Alma 2006).

Figure 12
Example of an adult of F. florii 
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Insect vector monitoring

Accurate information gathered from insect vectors and AP form the 
basis to understand spatial patterns and dynamics of outbreaks and 
to provide recommendations of pest management strategies to ap-
ple-growers and stakeholders.
For C. picta and C. melanoneura, monitoring techniques comprise 
visual inspection, beating tray, sticky traps and sweep net. Depend-
ing on the required information (occurrence, densities, developmen-
tal stage, generation, gender composition and spatial patterns) and 
on the plants (host or shelter plants) not all methods are equally 
suitable and therefore different techniques should be combined 
(Alma and Tedeschi 2010).
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Visual inspection
At intervals of 7-14 days, hundreds of plant organs (such as sprouts, 
floral rosettes and twigs) should be randomly selected to be inspect-
ed for the presence or absence of psyllids (Mattedi et al. 2008c). 
Visual inspection provides general information about vector popula-
tion abundance and composition in terms of mobile stages (nymphs 
and adults) and eggs (Tedeschi et al. 2009; 2012). 

Beating tray
Beating tray or “limb jarring” (Burts and Retan 1973) (Fig 13) is the 
most common method for psyllid sampling and used to obtain abso-
lute densities (number of psyllids per branch/shoot/leaflet) (Tedeschi 
et al. 2009; 2012). Psyllid sampling is recommended to be carried out 
at lower daytime temperatures (e.g. Horton 1999). Beating tray sam-
pling is carried out using a white cloth-covered rectangular tray hold 
as close as possible below the apple limb (preferable < 20 cm) which 
is beaten with three medium-intense strikes (Tedeschi et al. 2012). 
Sequential sampling of trees in the same row should be avoided, 
since apple trees are often connected with wire and beating of one 
tree causes vibration that might in turn affect the vector presence 
on a neighboring tree.

Sticky traps
Sticky traps have successfully been used to monitor the flight activity 
of insects. However, Horton (1999) showed that the interaction of 
different factors (e.g. environmental conditions, physiological status 
of the insect) influences flight activity, and thus sticky trap catch-
es. Additional factors such as the number of trap catches, weather 
conditions, trap height, position, size and material of the trap are 
known to influence the success rate of sticky traps. Therefore, insect 
monitoring results gathered with sticky traps should be interpreted 
cautiously. Comparing several fluorescence spectra, Adams et al. 
(1983) found that sticky traps with a spectrum between 520-600 nm 
(e.g. yellow sticky traps) achieved highest pear psyllid catches, while 

Figure 13
Beating tray
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paring yellow sticky traps of different intensity, Hall et al. (2010) de-
tected no significant difference in psyllid catches. Yellow sticky traps 
were successfully used alone (García et al. 2014; Miñarro et al. 2016) 
or in combination with beating trays (Tedeschi et al. 2002), to study 
psyllid population dynamics in apple orchards; and to sample the 
psyllid fauna living on hawthorn (Tedeschi et al. 2009).
C. melanoneura catches by yellow sticky traps are generally male bi-
ased due to an earlier movement of males into apple orchards from 
overwintering sites at the beginning of the season, an increased 
mate searching behavior and a decreased fly activity of egg-laying 
females (Tedeschi et al. 2002). According to Chireceanu and Fată 
(2012), yellow sticky traps indicated a longer time of C. melanoneura 
adults’ activity, with 2-3 weeks for the overwintered and with 1-2 
weeks for the spring adults, than the beating tray sampling method. 
For taxonomic identification or preservation for further analyzes, 
caught insects can be detached from sticky traps using hexane, ac-
etone or commercial solvents such as Bio-Clear (Bio-Optica, Milan, 
Italy). It is important to note that data obtained by yellow sticky traps 
are cumulative (1 or 2 weeks of capture), while beating trays give 
‘snapshot’ data and therefore direct comparison of the results is 
not possible.

Sweep-net
Periodically sweep-net sampling has been performed for research 
purposes to monitor psyllids behavior on weeds under apple trees 
(Forno et al. 2002). The survey has been performed for three consec-
utive years by doing 50 sweeps per orchard and the authors report-
ed that the psyllid species found in scrub on cover ground weeds 
were the same as on the neighbouring apple trees and that they 
disappeared from the weeds without giving offspring. Sweep-netting 
is also used to sample AP psyllid vectors on shelter plants during 
aestivation and overwintering. For this purpose, a sweep net with a 
telescopic handle is required in order to reach the highest parts of 
the plants where psyllids occur (Čermák and Lauterer 2008; Pizzinat 
et al. 2011) (Fig. 14).
Visual inspections, beating tray and sweep-net allow to capture living 
specimens that can be used in further trials (e.g. transmission trails) 
and/or molecular analyses.

Figure 14
Use of a sweep-net in winter
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Control strategies against the vectors

Severe outbreaks of AP across Europe and the subsequent de-
scription of the two main vectors had a high influence on the pest 
management strategy. The previously neglected insects C. picta and 
C. melanoneura moved to the center of attention of apple growers 
who started to treat them with pesticides (Jarausch and Torres 
2014). Combatting the vectors and eradication of infected plants 
led to a decline of the psyllid populations and a decrease of AP oc-
currence in the different regions. 
Recently, Baldessari et al. (2017) revealed the efficacy of several in-
secticides against AP psyllids overwintered adults. They character-
ized pesticides regarding the effectiveness and persistence of their 
active ingredients with the aim to replace substances with an unfa-
vorable eco-toxicological profile. For this purpose, over the years, 
full-field and semi-field tests have been carried out, evaluating about 
15 active principles at different treatment time points, including 
some new pesticide formulations. Figures 15 and 16 summarize an 
example of the results obtained in semi-field tests in Trentino. These 
results show that for both AP psyllids all tested insecticides cause 
high mortality rate in remigrant adults even only seven days after 
treatment, thus demonstrating a good persistence. Furthermore, 
these products have also been validated in terms of crop selectivity 
and side effects against beneficial insects. 
An alternative approach to control psyllid populations is represent-
ed by wrapping particles, such as kaolin, that act by creating a film 
that hinders insects from feeding or moving onto the plants, and 
to a second extent prevent the transmission of plant pathogens by 
insect vectors. Processed kaolin has already been proposed as an 
alternative to broad-spectrum insecticides against the European 
pear psyllid C. pyri (Daniel et al. 2005; Pasqualini et al. 2002; Erl-
er and Cetin 2007; Saour et al. 2009) and its efficacy was proved 
against C. melanoneura (Tedeschi et al. 2007a; 2007b). Late winter 
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Mortality of C. melanoneura 
overwintering adults (%) one hour 
and seven days after treatment with 
different insecticides; persistence 
was evaluated after one, three and 
seven days after exposure
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treatments with kaolin were able to reduce the number of laid eggs 
and consequently of nymphs. Since kaolin is not considered as an in-
secticide, but a coadiuvant it can be used in organic farming as well.
In the last years there was a particular interest in innovative control 
strategies based on the development of species-specific traps for 
monitoring and mass trapping of different vector species of fruit 
tree phytoplasmas including C. melanoneura and C. picta (Jarausch 
and Torres 2014). In particular, in the AP-pathosystem, the phero-
mones produced by infected plants is attractive to both sexes of 
psyllids, so it could be possible to develop mass trapping systems 
for a sustainable vector control. Also, for C. melanoneura potentially 
behavior modifying compounds could be identified, but to date they 
are not species-specific. The possibility to combine attractive com-
pounds to be used in traps as lures for monitoring and mass trap-
ping purposes and with repellent compounds to be used in complex 
push-and-pull strategies is promising (Eben and Gross 2013).
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Figure 16
Mortality of C. picta overwintering 
adults (%) one hour and seven 
days after treatment with different 
insecticides; persistence was 
evaluated at one, three and seven 
days of exposure

Development of sustainable control 
strategies 

Biological control: microbial symbionts 
of the insect vectors and their potential role 
in phytoplasma transmission
Microorganisms are ubiquitous in insects and may influence dramat-
ically the ecology of their host (Dale and Moran 2006). Consequenc-
es of these interactions can vary along a continuum from mutualism 
to parasitism. At one extreme, primary endosymbionts can positively 
affect the fitness of their host by providing essential nutrients or 
protect against parasites. Most of these symbionts are therefore 
required for the development of their hosts (Douglas 2016). At the 
other extreme, secondary symbionts can negatively affect the fitness 
of their hosts (Engelstädter and Hurst 2009). Being maternally inher-
ited, they modify the reproduction of their hosts toward females to 
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enhance their own fitness (Werren et al. 2008). These endosymbi-
onts are usually not required by the host and in most of the cases 
impact its fitness negatively (Douglas 2011). 
The adaptation to specific host plants results in nutrition deficien-
cies that have to be compensated by obligate symbionts that supply 
lacking nutrients. Therefore, primary endosymbionts are ubiquitous 
in herbivorous Hemipteran species and provide essential nutrients 
lacking in the food source (Baumann 2005). The gammaproteobac-
terium Carsonella ruddii is a primary endosymbiont that appears to 
be present in all species of psyllids (Thao et al. 2000). As psyllids feed 
on phloem sap that is rich in sugars but poor in amino acids, this 
endosymbiont synthesizes essential nutrients missing in their diet 
(Baumann 2005). Moreover, many psyllids are infected by various 
secondary endosymbionts with unknown functional roles (Sloan and 
Moran 2012).
The impacts of endosymbionts to their hosts offer the possibility of 
symbiont-based tools to control insect pests. Endosymbionts can be 
used to negatively influence the fitness of its host or to reduce its 
competence to vector diseases (Arora and Douglas 2017). For exam-
ple, the endosymbiont Wolbachia has been shown to be capable to 
directly suppress the abundance of pest insects and to prevent vi-
ruses from replication within its vectors (McGraw and O'Neill 2013). 
Wolbachia-infected mosquitoes are currently being released in the 
field to suppress the transmission of dengue (Hoffmann et al. 2011). 
The diversity of endosymbionts found in vector species of phyto-
plasmas offers an interesting opportunity to study symbiont-based 
control mechanisms of phytoplasma transmission (Alma et al. 2010).
Transcriptomic and metabolomic approaches have been used to 
comprehensively investigate interactions between 'Ca. P. mali' and 
its vector C. melanoneura (Weil et al., in preparation). It has been 
found that the pathogen likely modulates host behavior mainly by 
affecting the insect nervous system and rhythmic processes. Fur-
thermore, metabolic analyses showed that carbohydrate and polyol 
levels are significantly altered upon 'Ca. P. mali' infection and lead 
to metabolic imbalance in the insect. These results suggest that in-
fection with 'Ca. P. mali' has a major impact on the insect vector 
physiology and behavior, and thus on the ability to transmit the 
phytoplasma. Hence, deepening the knowledge of the complex dy-
namics behind this plant-vector-pathogen system may pave the way 
for the development of novel and sustainable control strategies of 
apple proliferation disease.

Biotechnological control: intraspecific and inter-
specific communication
Insects can use chemical, visual and acoustic modalities to exchange 
information and coordinate complex courtship behaviors (Luban-
ga et al. 2016). It was only relatively recently that intraspecific se-
miochemical signalling was reported to play a role in psyllid mate 
attraction (Soroker et al. 2004). To-date, males of different psyllid 
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species have been shown to be attracted to female-produced se-
miochemicals, as Cacopsylla bidens (Šulc 1907), Cacopsylla pyricola 
(Förster 1848), Bactericera cockerelli (Šulc 1909) and Diaphorina citri 
(Kuwayama 1908). For instance, females of C. pyricola produce sig-
nificantly larger quantities of 13-methylheptacosane than males, a 
compound that is known to be attractive to males (Guédot et al. 
2009). This provided the first evidence of a female sex pheromone 
capable of attracting male psyllids from neighboring host plants. 
Using a similar approach, dodecanoic acid was identified as the fe-
male semiochemical attractive to male D. citri (Mann et al. 2013). 
After searching and recognition activity, courtship is usually brief 
and seems to be mediated by a combination of both epicuticular 
hydrocarbons and substrate-borne vibrational signals. 
With regard to the interspecific communication, C. picta and C. mela-
noneura use volatile chemical cues also for the identification of their 
host plants (Gross 2011). Furthermore, 'Ca. P. mali' has evolved 
mechanisms for the manipulation of plant physiology and indirectly 
vector behavior by attracting C. picta to infected plants for feeding 
purposes (Mayer et al. 2008a; 2008b). This coevolutionary process 
increases the likelihood of phytoplasma acquisition by the insect 
vector and subsequently its spread. In contrast, C. picta prefers to 
oviposit on healthy trees, maybe due to detrimental effects of phyto-
plasma to the offspring fitness (Mayer et al. 2011). The plant volatile 
mainly responsible for the vector attraction to infected trees has 
been identified by headspace-gas chromatography (HS-GC) analysis 
of infected apple trees as β-caryophyllene – a sesquiterpene. It is 
now under evaluation for the development of traps for monitoring 
and/or mass trapping (Weintraub and Gross 2013). In contrast, the 
hawthorn psyllid C. melanoneura did not react to this sesquiterpene 
(Eben and Gross 2013).
Acoustic signals among insects can be divided into two categories 
based on the medium of transmission: air-borne signals (e.g. Cica-
doidea, Grylloidea, Tettigoniidae) and substrate-borne signals (e.g. 
Psylloidea, Chrysopidae) (Liao and Yang 2015). In the Psylloidea, the 

Figure 17
Scanning electron microscopy (SEM) 
investigation on C. melanoneura 
female
A) thorax and hindwing axillary cords 
(axc2, axc3), mesopostnotum (pnt2); 
B) detail of the axillary cord B; 
C) detail of hindwing (A2) 
(R. Kostanjšek/T. Oppedisano)

A C

B
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substrate-borne signals have a function only in mating and specific 
recognition. The male and female psyllids usually perform reciprocal 
duets during courtship (Tishechkin et al. 2006; Percy et al. 2006; Eben 
et al. 2015; Liao and Yang 2015). Psyllids are able to produce vibra-
tions by rapidly moving their forewings that present a single row of 
ridges on the anal vein rubbing against similar structures on pro-
truding ridges on the meso- and meta thorax (Taylor 1985) (Fig. 17). 
Signal characteristics, such as call length, pulse number and reply 
latency, are used for species and gender recognition (Lubanga et 
al. 2014). Laser vibrometer recordings of vibrational signals of the 
two AP vectors emitted during courtship have been recorded re-
cently (Oppedisano et al. 2016; Oppedisano et al. 2019a). Females 
of C. picta were shown to initiate communication on the host plant 
by emitting trains of vibrational pulses, followed by a duet consist-
ing of male call and female reply (Fig. 18). Although C. melanoneura 
language has not been described yet, the existence of male calls has 
been demonstrated as well in the same studies. This finding would 
open the way for testing the possibility to interfere with the mating 
vibrational communication of vector psyllids as an alternative pest 
control method as already demonstrated in application of biotech-
nological control of other insect pests by mating disruption (Eriksson 
et al. 2012; Polajnar et al. 2016; Nieri and Mazzoni 2018).

Figure 18
Spectrogram of C. picta vibrational 
signals recorded during courtship 
behavior. Female signal is a sequence 
of pulses; male signal consists in a 
series of pre-pulses and a buzz

Unraveling environmental factors on 
apple proliferation using statistical models

Currently, monitoring data of both AP vectors, is the basis to de-
termine pest management strategies. Due to cost and time-con-
suming fieldwork and laboratory analyses, the vector monitoring 
is performed only at a limited number of survey sites from which 
management decisions are generalized. However, environmental 
conditions of the apple orchards are not equally suitable for the AP 
vectors and hence, those generalizations may result in ineffective 
pest management.
In Valsugana (Trentino), the first appearance of the AP vector 
C. melanoneura is predicted using temperature thresholds (Tedes-
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chi et al. 2012). Since oviposition occurs at bud burst, while egg peak 
and hatchings are always before the first flowering, synchrony be-
tween C. melanoneura and host-plant growth is important and as-
sumed to be linked with temperatures (Hodkinson 2009). Thus, an 
immigration index to predict the progressive arrival of the overwin-
tered adults from winter sites was defined (Tedeschi et al. 2012). In 
the investigated area psyllids start to reach the apple orchards when 
either the average of the maximum temperature of the 7 d is above 
9.5 °C or the immigration index has reached the threshold. This 
index, based on temperatures recorded in the orchards, represents 
a useful tool to time insecticide treatments against C. melanoneura. 
Based on Tedeschi et al. (2012), a temperature based-immigration 
model has been developed for C. melanoneura and C. picta to predict 
the first presence in apple orchards in apple South Tyrol (Panassiti 
2018). However, this model has several limitations and the appli-
cability of the results needs further evaluation. Furthermore, the 
results of the temperature-based model for the migration prediction 
of C. picta and C. melanoneura showed strong differences already in 
a small-scale geographic comparison. This indicates that all predic-
tions -even if enough data are available- are only valid for very small 
geographic areas. Geographical factors associated with the winter 
sites location (e.g., the regional ortography, the main air streams 
and distance from apple orchards) may differently affect the psyllid 
migration process and influence its presence or absence. 
Habitat models (also known as species distribution models) aim 
to identify and quantify the relationship between environmental 
variables and a response variable (Guisan and Zimmermann 2000). 
Examples of response variables in the AP epidemiology could in-
clude presence/absence and abundance of the vector, 'Ca. P. mali' 
prevalence within the insect vector, and the presence/absence of 
AP symptoms on apple trees. Abiotic and biotic environmental pre-
dictors are typically chosen to represent resources (e.g. host plants), 
disturbances (e.g. insecticides) and limiting factors (e.g. temperature) 
(Guisan and Thuiller 2005).
The results of statistical models can be beneficial to improve AP 
control strategies in different ways. For example, information about 
vectors’ forest type preference can be helpful to narrow down over-
wintering sites. This would allow placing temperature logger for a 
better estimation of the start of the vectors’ flight activity. Further, 
identified species-environment relationships allow area-wide predic-
tions and based on those, the creation of risk maps. 
Habitat models are not restricted to vectors, but can also be applied 
to the pathogen and the disease (Thébaud et al. 2006; Panassiti et al. 
2015; 2017). Using Bayesian inference, Panassiti (2018) developed a 
joint model (i.e. simultaneously estimating the dependencies of vec-
tor, phytoplasma infection rates of the vector and AP symptoms of 
apple trees) for the AP epidemiology. The model allowed to account 
for imperfect detection of AP symptoms by estimating the detection 
probability conditional on the true infection status. One factor af-
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fecting symptom detection are latent infections, assumable yielding 
an increased number of false negatives, and hence, a biased infer-
ence of the system. Therefore, Panassiti (2018) included a so called 
“informative prior” which takes advantage of exisisting experimental 
results about latent AP infections of apple trees (2.32 and 10.48 % 
depending on age of the apple trees, Baric et al. 2007), and allowed 
for a better estimation of detection probability. The model results 
indicated that AP vector and symptomatic tree occurrence probabil-
ities are positively affected by increasing elevation and temperature, 
in contrast negatively by integrated pest management. The results 
of this study are however rather preliminary.
In conclusion, habitat models are a useful tool to establish spe-
cies-environment relationship and to create risk maps. The model 
results may, therefore, contribute to new insights in the AP epi-
demiology and allow to develop and adapt efficient management 
strategies.
 

The order of Hemiptera comprises insect groups with specific 
piercing-sucking mouthparts, which conferred a relevant effect in 
their adaptive radiation (Goodchild 1966). As phloem-limited, phy-
toplasmas can be acquired and transmitted only by phloem-feed-
ing insects. Hemiptera feeding habits range from phytophagy (the 
majority of species) to predation, including ectoparasitism and hae-
matophagy. Phytoplasma vectors must feed specifically and selec-
tively on this particular plant tissue, where pathogens reside, in a 
nondestructive way. Weintraub and Beanland (2006) reviewed the 
features required by an insect species to be a successful phytoplas-
ma vector and, according to the authors, Hemiptera are the main 
elicited insect group. Insects of this order are hemimetabolous and 
nymphs and adults besides feeding similarly, share the same physi-
cal location; often both nymphs and adults can transmit phytoplas-
mas. They feed specifically and selectively on certain plant tissues, 
which makes them efficient vectors of pathogens residing in those 
tissues. Furthermore, their feeding is nondestructive, promoting suc-
cessful inoculation of the plant vascular system without damaging 
conductive tissues and eliciting defensive responses. Moreover, they 
have a propagative and persistent relationship with phytoplasmas. 
Hemiptera is a very diverse order of insects comprising e.g. the sub-
order Sternorrhyncha (comprising the Superfamilies: scale insects 
(Coccoidae), aphids (Aphidoidea), psyllids (Psylloidea) and whiteflies 
(Aleyrodoidea)), true bugs (Heteroptera), and Auchenorrhyncha. The 
latest have been traditionally divided into two suborders: Cicado-
morpha (to which the families of the leafhoppers (Cicadellidae), tree-
hoppers (Membracidae), spittlebugs (Aphrophoridae) and cicadas 
(Cicadidae) belong) and Fulgoromorpha (the planthopper). 
In the last years, the population densities and infectivity rates found 
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in C. picta and C. melanoneura after new AP outbreaks in Trenti-
no-South Tyrol, were not enough to explain the levels of spreading 
of the disease in field. Therefore, attempts have been undertaken 
to identify further AP transmitting insect vectors, mainly among he-
mipteran species. As previously stated, transmission trials are the 
only proof of an insects’ phytoplasma transmission ability. Although, 
'Ca. P. mali' was detected in some phloem-feeding insects, transmis-
sion trials were not carried out or yielded negative results and there-
fore these insects are not considered as vectors of 'Ca. P. mali'. The 
presence of 'Ca. P. mali' was detected in several apple aphids: Aphis 
pomi (De Geer 1773), Dysaphis plantaginea (Passerini 1860), Erioso-
ma lanigerum (Hausmann 1802), Dysaphis devecta (Walker 1849) and 
Rhopalosiphum insertum (Walker 1849). Aphids had a much lower 
'Ca. P. mali' titer than infected psyllids and transmission trials failed. 
Thus, the authors concluded that aphids do not contribute to AP 
spreading (Cainelli et al. 2007).
'Ca. P. mali' was also detected in other Cacopsylla species, such as 
Cacopsylla peregrina (Förster, 1848) (Tedeschi et al. 2009), as well 
as in Cacopsylla mali (Schmidberger 1836) and Cacopsylla crataegi 
(Schrank 1801) (Baric et al. 2010b; Miñarro et al. 2016). Reported 
pathogen presence in these insects ranged from 21.74 % to 53.85 % 
for Cacopsylla peregrina, from 1 % to 10 % for Cacopsylla mali and 
from 1 % to 16.7 % for C. crataegi (Tedeschi et al. 2009; Baric et al. 
2010b; Miñarro et al. 2016). Moreover, 'Ca. P. mali' was detected in 
two exotic eucalyptus psyllid pests, Ctenarytaina eucalypti (Maskell 
1890) and Ctenarytaina spatulata (Taylor 1997), which both are pres-
ent in apple orchards in the Asturia region in Northern Spain, with 
percentages of 'Ca. P. mali' positive individuals ranging from 1.4 to 3 % 
for C. eucalypti and from 2.3 % to 2.7 % for C. spatulata (García et al. 
2014; Miñarro et al. 2016). For all these species further transmission 
trials need to be carried out to confirm their vector status. 
In the past, different insect species belonging to the family Cicadel-
lidae (Auchenorrhyncha) occurring in the apple orchards, such as 
Empoasca vitis (Göethe 1875), were analyzed for the presence of 
'Ca. P. mali' without success (Mattedi et al. 2008e). To investigate 
the vector ability of this species, Mattedi et al. (2008e) carried out 
transmission trials, but no positive results were obtained. Other spe-
cies reported as vectors are Philaenus spumarius (Linnaeus 1758) 
(Homoptera: Aphrophoridae) and Artianus interstitialis (Germar 1821) 
(Homoptera: Cicadellidae), which were able to transmit 'Ca. P. mali' 
from infected celery to apple seedlings and from infected to healthy 
celery (Marenaud et al. 1978; Hegab and El-Zohairy 1986; Németh 
1986). However, other experiments conducted with P. spumarius did 
not confirm the previous results (Refatti et al. 1986). Danielli et al. 
(1996) detected different groups of phytoplasma in the planthopper 
Metcalfa pruinosa (Say 1830) (Homoptera: Flatidae), including 'Ca. P. 
mali', but its vector status has never been confirmed.
After the outbreaks of AP in Trentino South-Tyrol in 2011, research-
ers focused part of their work in collection and identification of 
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Species abundance in nine 
apple orchards surrounded by 
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Valsugana (Trentino)
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hoppers community in apple orchards, studying their distribution 
in the whole apple agroecosystem. Insects such as leafhoppers and 
planthoppers show frequent migrations (DeLong 1971; Taylor 1985, 
Della Giustina 2002a, 2002b) that influence their population dynam-
ics and spatial distributions. These migrations have to be taken into 
account for adequate integrated pest management strategies (Mat-
sumura and Suzuki 2003; Orestein et al. 2003; Emmen et al. 2004; 
Decante and van Helden 2008). As a rule, only few insects are con-
sidered as key species of any crop. However, this approach fails to 
explain in detail all the relationships that exist in agroecosystems, 
where it is the whole community that determines production and 
socio-economic impact. Oppedisano et al. (2017) evaluated the ef-
fects of landscapes on the presence of these communities inside the 
apple orchards. Moreover, in the same study, the researchers eval-
uated the role of the most representative species as putative vector 
of 'Ca. P. mali'. Preliminary results about the hoppers communities’ 
diversity in apple ecosystem are shown in Figure 19, 20 and 21. 
Molecular analyses were conducted on 1305 individuals. Two leaf-
hoppers (Cicadellidae) were found positive regarding the presence 
of 'Ca. P. mali': one individual of Empoasca vitis and one of Orientus 
ishidae (Matsumura 1902) (Cicadellidae: Deltocephalinae). Moreover, 
two specimens belonging to the species Stictocephala bisonia (Kopp 
and Yonke 1977) (Membracidae: Membracinae) contained very low 
concentrations of 'Ca. P. mali'. Therefore, these results are the first 
step in the search of so far unknown or new vectors, albeit further 
investigations focused on their acquisition and transmission ability 
under controlled conditions are required.
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During the last decades a multidisciplinary approach was adopted 
to deepen our understanding of the epidemiological and biologi-
cal features of apple proliferation (AP). As no direct control meas-
ures are available to fight phytoplasma diseases, several projects 
aimed to gain knowledge about the mechanisms underlying dis-
ease spread. Many studies focused on the insect vector biology, 
ecology and about potential factors that predispose these insects 
to transmit phytoplasma. The results of the transmission trials with 
psyllids show that both C. picta and C. melanoneura play an impor-
tant role in the disease spread, especially at high densities and in 
the presence of high inoculum sources, i.e. the presence of many 
infected apple trees. At the moment, there is no indication that 
other hemipteran species play a role in disease transmission. How-
ever, an involvement of other insects as vectors in AP transmission 
cannot be excluded. 
Monitoring the incidence of symptomatic apple trees and the psyl-
lid populations is indispensable in epidemic and in endemic phases 
to assess the current situation and the effectiveness of the applied 
phytosanitary measures. In the last years in Trentino-South Tyrol 
very fluctuating disease incidences were recorded, thus long-term 
investigations are required to understand transmission dynamics 
in more detail. 
Psyllids are characterized by a univoltine biological cycle involving 
different (and only partially known) host plants. So far, no efficient 
rearing method has been established that allows the production 
of high numbers of insects for experimental purposes. Phytoplas-
ma are genetically highly dynamic and up to now no efficient cell 
free propagation method has been established. This lack of ex vivo 
culture methods hampers microbiological studies and renders ge-
netic manipulation of phytoplasma impossible. All these drawbacks 
and complications make any attempt of finding general conclusions 
even more challenging. 
Studies analysing the role of phytoplasmal effector proteins in dis-
ease development are emerging and important for a better under-
standing of the disease on the molecular level. Reliable diagnostics 
are furthermore essential, not only for monitoring the disease but 
also to determine potential new insect vectors and reservoir plants. 
The use of resistant rootstocks would be the most sustainable solu-
tion, but despite all efforts no apple variety was found that confers 
full resistance (i.e. that it cannot be infected) against 'Ca. P. mali'.
All control strategies applied so far in Trentino-South Tyrol are only 
focusing on reducing vector densities in the orchards by applying 
multiple chemical treatments and uprooting infected plants. In the 
future novel, specific and sustainable control measures against AP 
must be developed that can be used in organic apple cultivation 
as well. 
The results achieved in the last projects open new intriguing pos-
sibilities for the development of such prospective strategies. The 
assessment of hemipteran biodiversity confirms the importance of 
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investing in environmentally-friendly technological advances, since 
also conventionally cultivated apple orchards bear a broad spectrum 
of different insect species. 
The recent studies on psyllids communication, their microbiota and 
habitat modelling open new perspectives for the implementation of 
specific, sustainable and well-timed insect vector control strategies, 
essential to have a low impact on human and environmental health.
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