

An innovative approach for the management of spotted wing drosophila (*Drosophila suzukii*): improve crop protection using an environmentally friendly formulation

<u>I. Castellan</u>, *S. Schmidt*, *S. Angeli* Free University of Bolzano

European PhD Network "Insect Science" – 16 November 2017

Introduction

Irene Castellan - UniBz - PhD Network Insect Science

Damages and host range of D. suzukii

Economic damages 2010: € 500.000 (Trentino, Italy) 2011: € 3.000.000 (Trentino, Italy) 2011: € 550.000.000 (USA)

Reference: Cini et al., 2012

Irene Castellan - UniBz - PhD Network Insect Science

Insecticides: crucial for Preharvest Interval

Farmer pressure to have an alternative control method

3

K

Research project aims

Need of an interdisciplinary approach: CHEMICAL ECOLOGY

- Employing chemical, electrophysiological, and behavioural analyses
 - Provide a comprehensive portrait of the olfactory interactions between yeasts and D. suzukii

Why targeting **yeasts**?

- Test their effects on SWD known to be interacting with *Drosophila* species
- Flies recognize yeasts based on the rich repertoire of volatile organic compounds (VOCs)

Facilities

- Laboratories in UniBz
 - Volatiles extraction
 - Gas Chromatography
 - Electroantennography

unibz

- Laimburg Research Centre
 - Preparation of Yeast cultures
 - Field trials

Yeast volatiles extraction and analysis

- Chemically analyse the VOC profile of
- Headspace analysis: static or dynamic
- Expected outcome: reveal quantitative and qualitative differences among strains

6

unibz

Coupled gas chromatographyelectrophysiology

- Isolate and identify the physiologically active constituents from yeast VOCs that potentially define attraction\repulsion to *D. suzukii*
- *D. suzukii* antennae bear **olfactory sensilla:** electrophysical responses indicate that are used in chemoreception or gustation

In EAG we measure the sum of all sensilla responses of the antenna

Coupled gas chromatographyelectrophysiology

peaks

Südtirol · Alto Adige

Irene Castellan - UniBz - PhD Network Insect Science

Coupled gas chromatographyelectrophysiology

Measures intensity of antennal perception

9

Expected outcomes

- Select an attractive yeast bait to target *D. suzukii* on a selected surface
- Identify a phagostimulant component: keep the insect on the chosen surface
- Define an **insecticide additional component** to integrate the attractive system
- Develop an ideal method to apply in the open field: environmentally friendly formulation

Evaluate the field performance of attract & kill system and optimize it.

10

efire fessi Südtirol · Alto Adige

Acknowledgements

- Prof. Sergio Angeli (UniBz)
- Dott. Silvia Schmidt (Laimburg Research Centre)
- Research Staff

Freie Universität Bozen Libera Università di Bolzano Free University of Bozen · Bolzano

11

Bioassay-guided identification of semiochemicals: olfactometry

Irene Castellan - UniBz - PhD Network Insect Science

Additional

Spotted Wing Drosophila (Drosophila suzukii) has an ovipositor that enables it to pierce the skin of healthy fruit still attached to the plant.

Drosophila suzukii ovipositor

- Spines black color intensity
 increased sclerotization or hardness
- Largest spine located at tip of ovipositor; punctures the skin of the fruit, allowing insertion of the ovipositor.

Non-suzukii ovipositor

- · Blunt tip of ovipositor
- · Spines not blackened less
- hardened or sclerotized • Cannot pierce skin of healthy fruit

