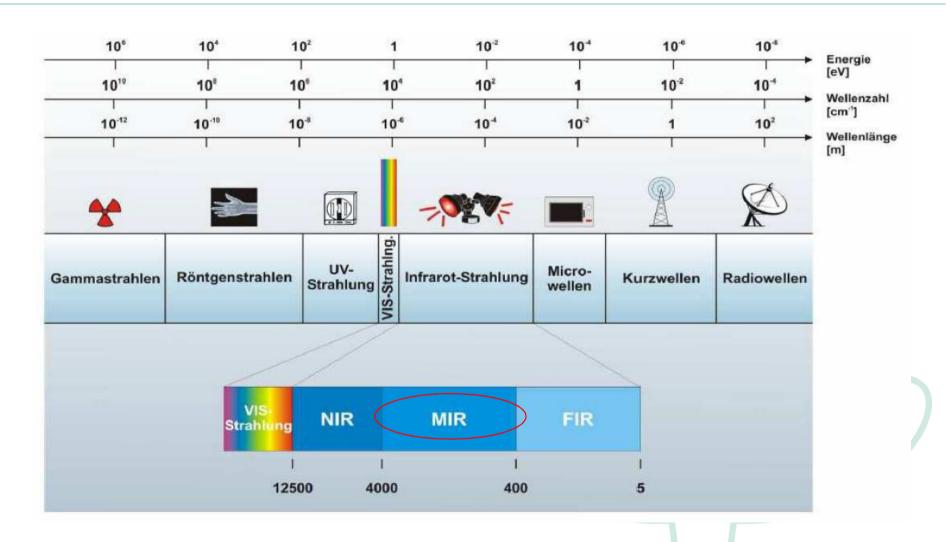


Einblick in die FT-IR-Technologie

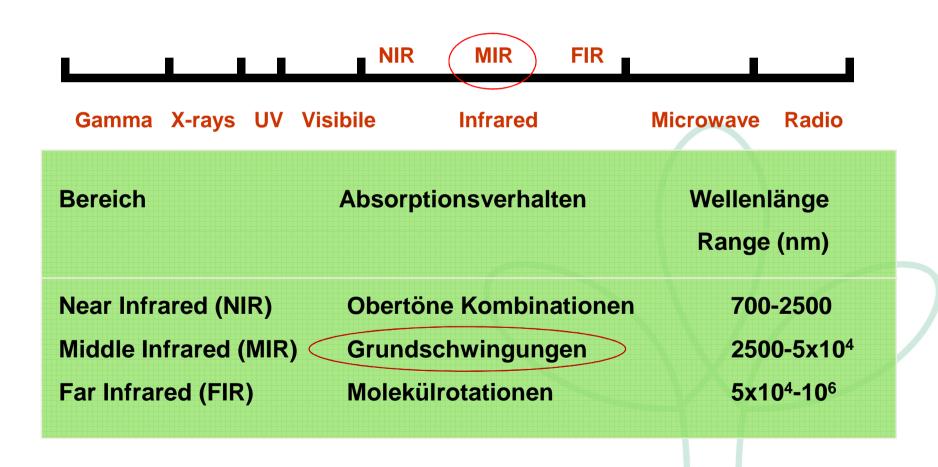
Labor für Wein- und Getränkeanalytik

Sanoll Christof


IR-Spektrometer

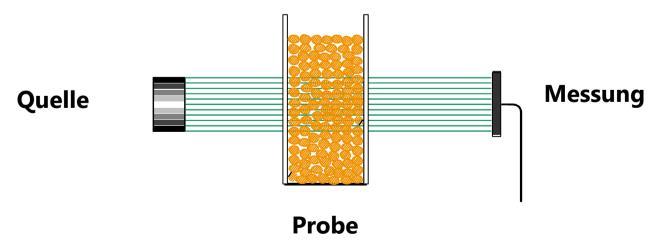
- Was kann es?
- Betreuung und Weiterentwicklung
- Einblick über Technologie
- Möglichkeiten der Anwendung
- Was ist eine Kalibrierung
- Mostanalysen 2018

Die elektromagnetische Strahlung

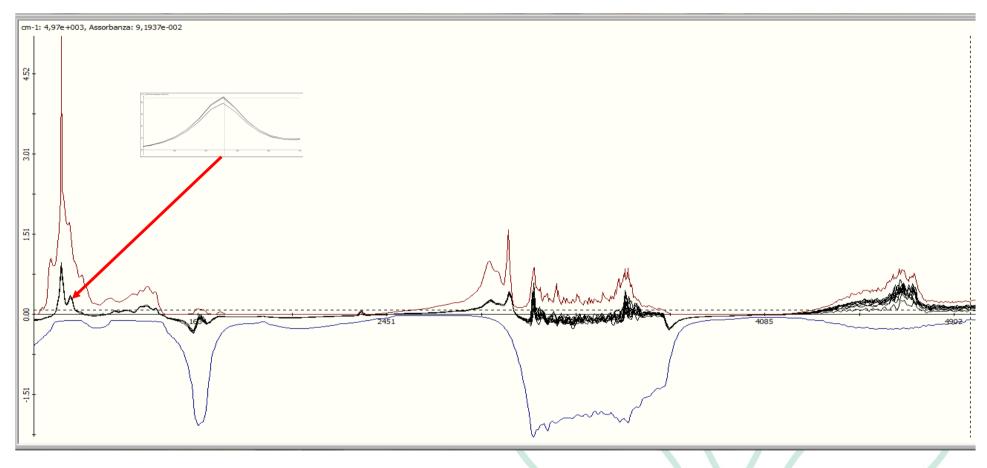


Vis-Strahlung ist die für uns Menschen sichtbare elektromagnetische Strahlung


Absorptionsverhalten

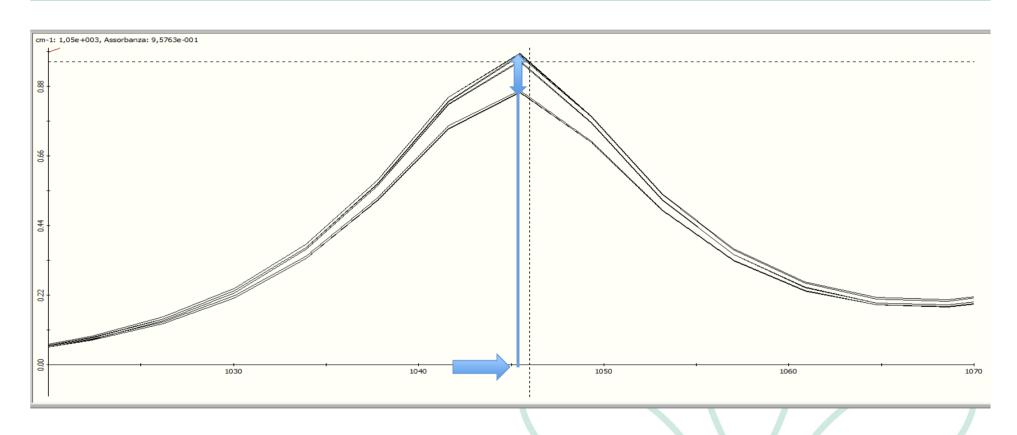

Grundschwingungen im Molekül

Die absorbierte Energie wird in kinetische Energie umgewandelt



Moleküle wie Alkohole, Zucker, organische Säuren, Stickstoffverbindungen und andere Inhaltsstoffe haben die Fähigkeit Energie, in Form von elektromagnetischer Strahlung zu absorbieren und zu emittieren

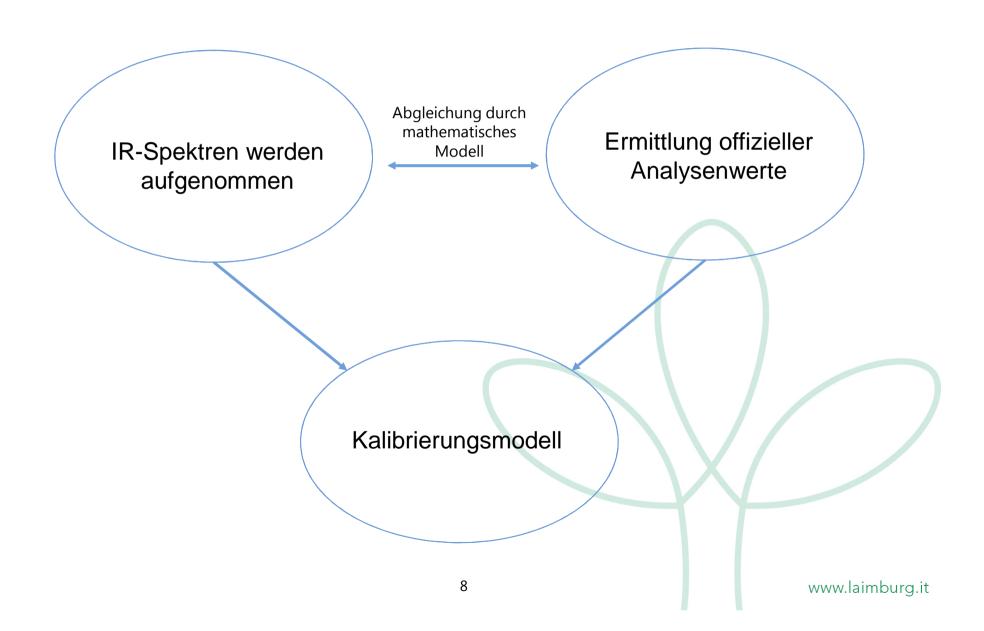
Infrarotspektrum WineScan


Das Spektrum wird in einem Wellenzahlenbereich von 900 cm⁻¹ bis 4900 cm⁻¹; bzw. 3300 nm bis 17000 nm aufgenommen

Für Messungen, bzw. Ermittlung der Werte wird nicht der gesamte Wellenzahlenbereich verwendet

Im Wellenzahlenbereich von 900 cm⁻¹ bis 3000 cm⁻¹ wird in über 1000 Punkten die Absorbanz gemessen um das IR-Spektrum zu erstellen

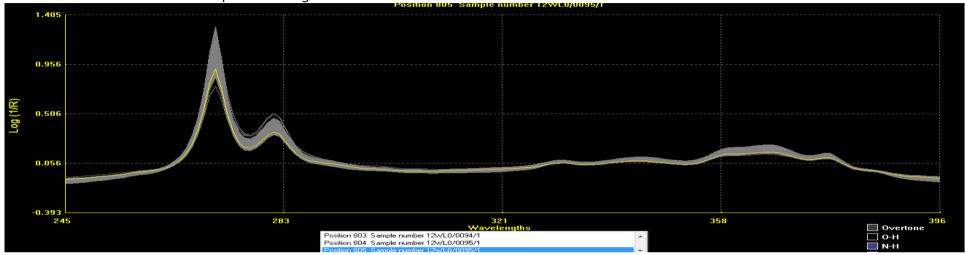
Isolierung eines Signals

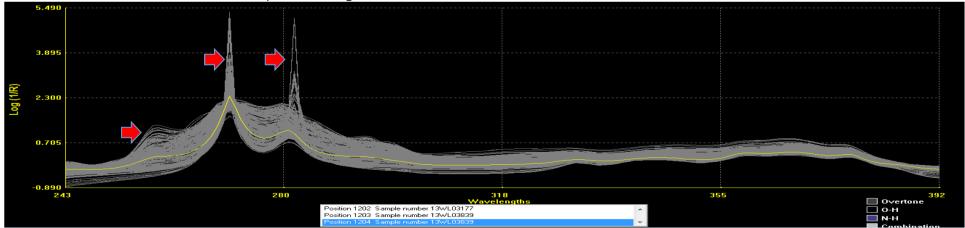


Die genaue Wellenzahl wird zur Charakterisierung eines bestimmten Inhaltsstoffes, z. B. Alkohol verwendet. Qualitative Analyse

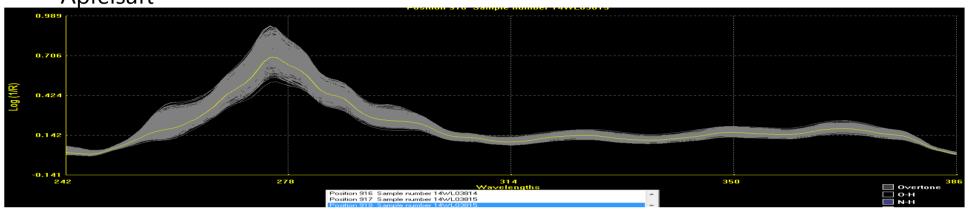
Die Intensität des Signales ist direkt proportional zu der Konzentration des Inhaltstoffes. Je mehr Alkohol, desto intensiver das Signal im interessierten Wellenbereich


Indirekte Messmethode

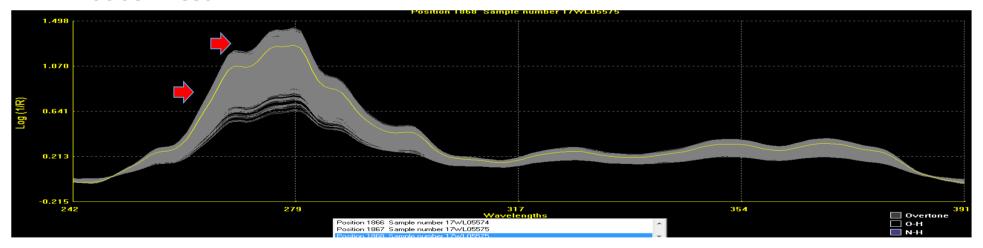



Spektrenansammlung

Destillate Verschiedene Spektren der gleichen Matrix stimmen überein



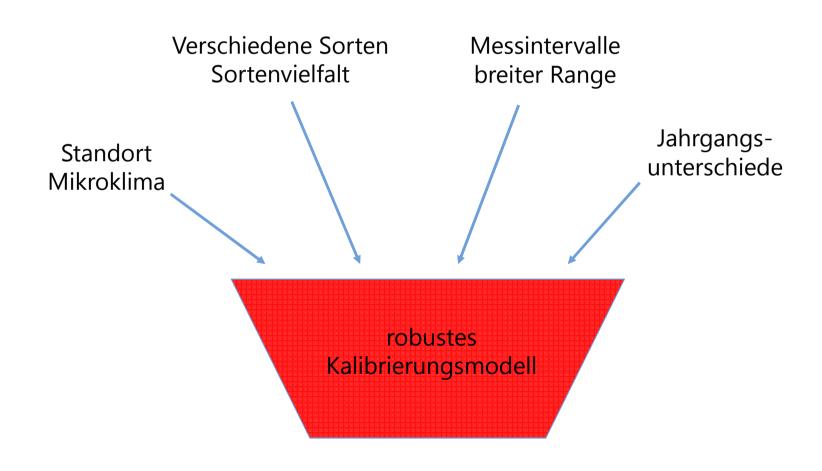
Die Form der Spektren verschiedener Matrizen unterscheiden sich sehr und sind nicht überlappbar


Spektrenansammlung

Traubenmost

Die Form der Spektren verschiedener Matrizen unterscheiden sich wesentlich, es ist daher nicht möglich eine universelle Kalibrierung zu erstellen

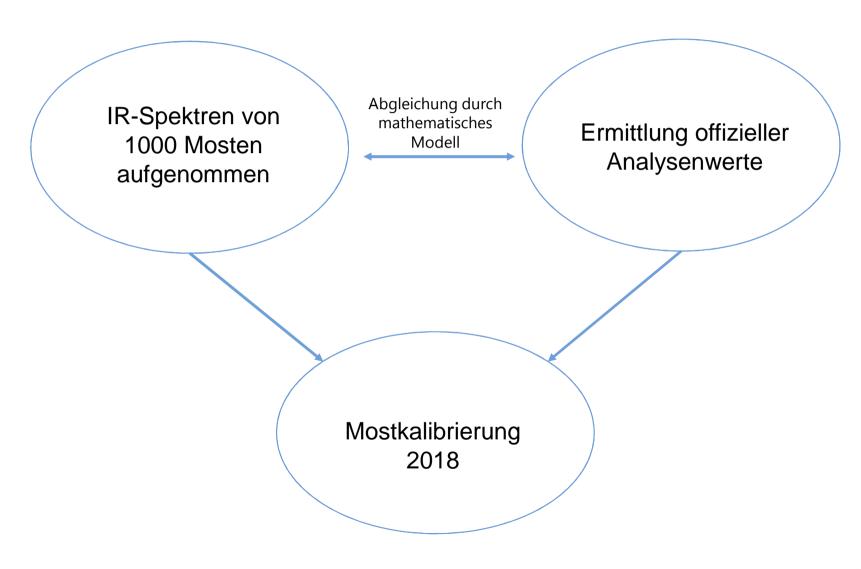
Verschiedene Kalibrierungsmodelle



Jede Matrix benötigt eine eigene Kalibrierung

- Trockene Weine
- Süßweine
- Schwefeldioxid SO₂
- Traubenmost
- Traubenmost in Gärung
- Destillate
- Liköre
- Apfelsaft

Erstellung einer Kalibrierung



- Durch verschiedene Standorte und verschiedene H\u00f6henlagen flie\u00dfen verschiedene Mikroklimas ins Modell ein
- Verschiedene Sorten widerspiegeln die Sortenvielfalt Südtirols
- Die Beprobung von Reifebeginn bis Lesetermin, garantieren eine breite Spannweite der analysierten Parameter
- Die rund 1000 Mostproben wurden zwischen 2012 und 2017 gesammelt, so fließen die Jahrgangsunterschiede in die Kalibrierung ein

2012	100 Proben
2013	140 Proben
2014	100 Proben
2015	400 Proben
2016	130 Proben
2017	100 Proben

Indirekte Messmethode

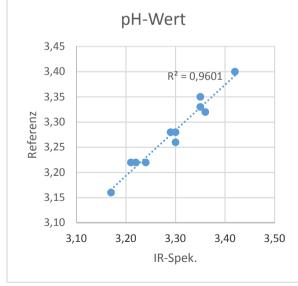
Analysenmethoden

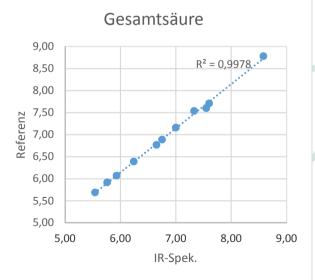
1. Von den 1000 Mostproben wurden folgende Parameter mit Labormethoden analysiert

<u>Parameter</u>	<u>Referenzmethode</u>
> KMW°	Refraktometer
pH und Gesamtsäure	Potenziometrisch
Weinsäure	Photometrisch
Apfelsäure	Enzymatisch
HVS, AminoN, AmmoniumN	Enzymatisch
> K+	Photometrisch

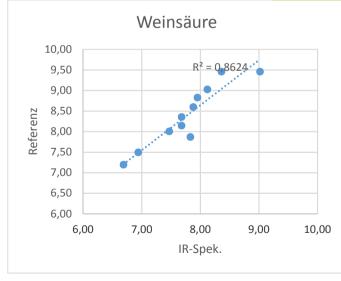
- 2) Von den 1000 Mostproben wurden je zwei IR-Spektren aufgenommen
- 3) Durch ein mathematisches Modell wurde eine stabile Kalibrierung "Most 2018" erstellt

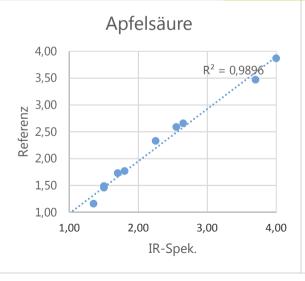
Kalibrierdaten Reifetest 2018

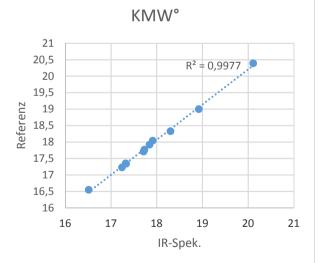



Parameter	Probenanzahl	Niedrigster Wert	Höchster Wert	R ²
KMW°	996	10,39°	22,69°	0,9991
Gesamtsäure	1009	3,63 g/L	17,41 g/L	0,9995
рН	1009	2,67	3,74	0,9800
Apfelsäure	1008	0,9 g/L	10,18 g/L	0,9937
Weinsäure	996	3,88 g/L	12,56 g/L	0,9492
Hefeverwertbarer Sickstoff	1556	75 mg/L	331 mg/L	0,9909
Alfa-Amino-Stickstoff	1565	52 mg/L	217 mg/L	0,9896
Ammoniumstickstoff	1561	23 mg/L	134 mg/L	0,9793
Kalium	1009	772 mg/L	2233 mg/L	0,8905

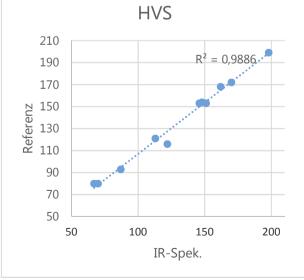
Sorte	Standort	Potenziometrisch	IR-Spek.	Abweichung	Potenziometrisch	IR-Spek.	Abweichung
		pH-Wert	pH-Wert		Gesamtsäure (g/L)	Gesamtsäure (g/L)	
Weißburgunder	Terlan	3,36	3,32	-0,04	5,54	5,69	0,15
Chardonnay	Kurtinig	3,22	3,22	0,00	8,58	8,78	0,20
Chardonnay	Salurn	3,29	3,28	-0,01	7,60	7,71	0,11
Ruländer	Kurtinig	3,35	3,35	0,00	5,93	6,07	0,14
Ruländer	Salurn	3,30	3,26	-0,04	6,65	6,77	0,12
Gewürztraminer	Tramin	3,42	3,40	-0,02	5,76	5,92	0,16
Gewürztraminer	Tramin	3,24	3,22	-0,02	6,24	6,39	0,15
Sauvignon	Terlan	3,21	3,22	0,01	7,33	7,54	0,21
Sauvignon	Eppan	3,17	3,16	-0,01	7,00	7,16	0,16
Blauburgunder	Montan	3,35	3,33	-0,02	6,75	6,89	0,14
Blauburgunder	Neumarkt	3,30	3,28	-0,02	7,55	7,60	0,05

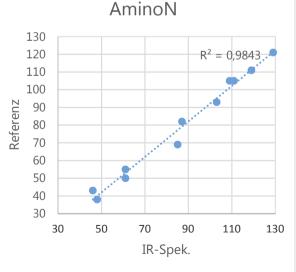


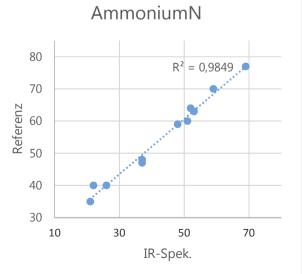



Validierung mit Reifetestdaten 2018

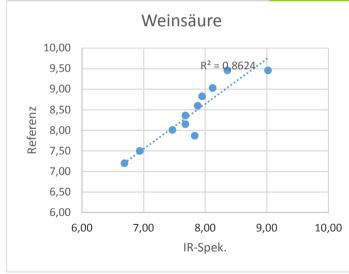
Weinsäure	IR-Spek.	Abweichung	Apfelsäure	IR-Spek.	Abweichung	Refraktometer	IR-Spek.	Abweichung
Weinsäure (g/L)	Weinsäure (g/L)		Apfelsäure (g/L)	Apfelsäure (g/L)		(°KMW)	(°KMW)	
6,69	7,20	0,51	1,80	1,77	-0,03	17,91	18,04	0,13
7,68	8,36	0,68	4,00	3,87	-0,13	17,33	17,34	0,01
7,83	7,87	0,04	3,70	3,47	-0,23	16,51	16,55	0,04
7,47	8,01	0,54	1,70	1,73	0,03	17,71	17,71	0,00
6,94	7,50	0,56	2,65	2,66	0,01	17,32	17,35	0,03
7,88	8,60	0,72	1,35	1,16	-0,19	18,92	19	0,08
7,95	8,83	0,88	1,05	0,94	-0,11	18,3	18,33	0,03
9,02	9,46	0,44	1,50	1,49	-0,01	20,11	20,39	0,28
8,12	9,03	0,91	1,50	1,46	-0,04	17,84	17,92	0,08
7,68	8,15	0,47	2,55	2,59	0,04	17,73	17,77	0,04
8,36	9,46	1,10	2,25	2,33	0,08	17,24	17,23	-0,01

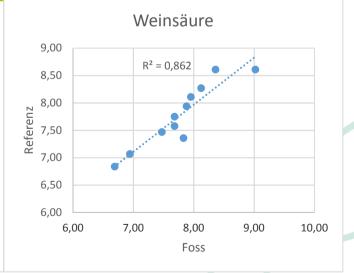





Validierung mit Reifetestdaten 2018

enz@mg/L	IR-Spek.	Abweichung	enz@mg/L	IR-Spek.	Abweichung	enz@mg/L	IR-Spek.	Abweichung
HVS (mg/L)	HVS (mg/L)		AmiN (mg/L)	AminoN (mg/L)		AmmoN (mg/L)	AmmoN (mg/L)	-
87	93	6	61	50	-11	26	40	14
198	199	1	129	121	-8	69	77	8
148	154	6	111	105	-6	37	48	11
162	168	6	109	105	-4	53	63	10
170	172	2	119	111	-8	51	60	9
146	153	7	87	82	-5	59	70	11
113	121	8	61	55	-6	52	64	12
70	80	10	48	38	-10	22	40	18
67	80	13	46	43	-3	21	35	14
151	153	2	103	93	-10	48	59	11
122	116	-6	85	69	-16	37	47	10
	HVS			AminoN		А	mmoniumN	
210		0.0005	130					




Justierung mit Reifetestdaten 2018

Vorher Nachher

Hyperlab@mg/L	IR Spektr.	Abweichung	Hyperlab@mg/L	IR Spektr.	Abweichung
Weinsäure (g/L)	Weinsäure (g/L)		Weinsäure (g/L)	Weinsäure (g/L)	
6,69	7,20	0,51	6,69	6,84	0,15
7,68	8,36	0,68	7,68	7,75	0,07
7,83	7,87	0,04	7,83	7,36	-0,47
7,47	8,01	0,54	7,47	7,47	0,00
6,94	7,50	0,56	6,94	7,07	0,13
7,88	8,60	0,72	7,88	7,94	0,06
7,95	8,83	0,88	7,95	8,11	0,16
9,02	9,46	0,44	9,02	8,61	-0,41
8,12	9,03	0,91	8,12	8,27	0,15
7,68	8,15	0,47	7,68	7,58	-0,10
8,36	9,46	1,10	8,36	8,61	0,25

Danke für Ihre Aufmerksamkeit. Grazie per la Vostra attenzione. Thank you for your attention.

Postadresse | Indirizzo postale Laimburg 6, Pfatten Vedena 39040 Auer | Ora (Italy)

versuchszentrum@laimburg.it centrodisperimentazione@laimburg.it laimburg.research@pec.prov.bz.it

Steuer-Nr. + MwSt.-Nr. (cod.fisc. + part. IVA) VAT number: IT00136670213 VWV Nummer/numero REA: BZ-201006 vom/del 17/10/2011

T +39 0471 969 500 F +39 0471 969 599

www.laimburg.it

AUTONOME PROVINZ BOZEN - SÜDTIROL

PROVINCIA AUTONOMA DI BOLZANO - ALTO ADIGE

PROVINZIA AUTONOMA DE BULSAN - SÚDTIROL